Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Med ; 95(1): 72-76, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348061

RESUMO

PROBLEM: Exposing medical students to a broad range of illness experiences is crucial for teaching them to practice patient-centered care, but students often have limited interaction with patients with diverse illness presentations. APPROACH: The authors developed, implemented, and evaluated a self-directed online curriculum followed by a small-group discussion focused on depression education. The curriculum was based on a module created using the Database of Individual Patients' Experiences methodology. Findings from 40 interviews with young adults across the United States about their diverse experiences with depression were summarized online, and the summaries were illustrated by video, audio, and text clips. From August 2016 to April 2017, third-year students completed either this online curriculum and the usual clerkship curriculum or just the usual clerkship curriculum. These intervention and control groups completed pre- and postsurveys. OUTCOMES: Students in the intervention group reported that the online curriculum influenced their thinking about depression (51/56) nearly as often as they reported that seeing patients in clinic did (53/56). They also reported greater decreases in personal stigmatizing attitudes toward depression than did students in the control group as measured by the Depression Stigma Scale (5.75-4.02, intervention; 6.50-5.65, control; P = .004). In open-ended responses, students in the intervention group were 13 times more likely to describe key lessons from the curriculum that reflected patient heterogeneity. NEXT STEPS: Future collaborations include implementing and evaluating this curriculum at other medical schools and developing additional versions based on other illness experiences.


Assuntos
Currículo/tendências , Educação de Graduação em Medicina/métodos , Assistência Centrada no Paciente/métodos , Estudantes de Medicina/estatística & dados numéricos , Depressão/diagnóstico , Depressão/psicologia , Educação a Distância , Humanos , Modelos Educacionais , Assistência Centrada no Paciente/normas , Avaliação de Programas e Projetos de Saúde , Estigma Social , Estados Unidos/epidemiologia
2.
J Neurosci ; 38(4): 787-802, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29217681

RESUMO

Shp2 is a nonreceptor protein tyrosine phosphatase that has been shown to influence neurogenesis, oligodendrogenesis, and oligodendrocyte differentiation. Furthermore, Shp2 is a known regulator of the Akt/mammalian target of rapamycin and ERK signaling pathways in multiple cellular contexts, including oligodendrocytes. Its role during later postnatal CNS development or in response to demyelination injury has not been examined. Based on the current studies, we hypothesize that Shp2 is a negative regulator of CNS myelination. Using transgenic mouse technology, we show that Shp2 is involved in oligodendrocyte differentiation and early myelination, but is not necessary for myelin maintenance. We also show that Shp2 regulates the timely differentiation of oligodendrocytes following lysolecithin-induced demyelination, although apparently normal remyelination occurs at a delayed time point. These data suggest that Shp2 is a relevant therapeutic target in demyelinating diseases such as multiple sclerosis.SIGNIFICANCE STATEMENT In the present study, we show that the protein phosphatase Shp2 is an important mediator of oligodendrocyte differentiation and myelination, both during developmental myelination as well as during myelin regeneration. We provide important insight into the signaling mechanisms regulating myelination and propose that Shp2 acts as a transient brake to the developmental myelination process. Furthermore, we show that Shp2 regulates oligodendrocyte differentiation following demyelination and therefore has important therapeutic implications in diseases such as multiple sclerosis.


Assuntos
Bainha de Mielina/metabolismo , Neurogênese/fisiologia , Oligodendroglia/citologia , Oligodendroglia/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Oligodendroglia/metabolismo , Peixe-Zebra
3.
Glia ; 64(11): 1972-86, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27463063

RESUMO

White matter injury following ischemic stroke is a major cause of functional disability. Injury to both myelinated axons and oligodendrocytes, the myelin producing cells in the central nervous system, occurs in experimental models of ischemic stroke. Age-related changes in white matter vulnerability to ischemia have been extensively studied and suggest that both the perinatal and the aged periods are times of increased white matter vulnerability. However, sensitivity of white matter following stroke in the juvenile brain has not been evaluated. Interestingly, the late pediatric period is an important developmental stage, as it is the time of maximal myelination. The current study demonstrates that neurons in late pediatric/juvenile striatum are vulnerable to ischemic damage, with neuronal injury being comparable in juvenile and adult mice following ischemia. By contrast, actively myelinating striatal oligodendrocytes in the juvenile brain are resistant to ischemia, whereas adult oligodendrocytes are quite sensitive. As a result, myelin sheaths are remarkably intact and axons survive well in the injured striatum of juvenile mice. In addition to relative resistance of juvenile white matter, other glial responses were very different in juvenile and adult mice following cerebral ischemia, including differences in astrogliosis, fibrosis, NG2-cell reactivity, and vascular integrity. Together, these responses lead to long-term preservation of brain parenchyma in juvenile mice, compared to severe tissue loss and scarring in adult mice. Overall, the current study suggests that equivalent ischemic insults may result in less functional deficit in children compared to adults and an environment more conducive to long-term recovery. GLIA 2016;64:1972-1986.


Assuntos
Corpo Estriado/patologia , Infarto da Artéria Cerebral Média/complicações , Leucoencefalopatias/etiologia , Fatores Etários , Animais , Axônios/patologia , Vasos Sanguíneos/patologia , Vasos Sanguíneos/ultraestrutura , Infarto Encefálico/etiologia , Modelos Animais de Doenças , Lateralidade Funcional , Transportador de Glucose Tipo 1/metabolismo , Glutationa Transferase/metabolismo , Heme Oxigenase-1/metabolismo , Leucoencefalopatias/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas da Mielina/metabolismo , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/ultraestrutura , Fatores de Tempo
4.
J Neurosci ; 34(4): 1333-43, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453324

RESUMO

Plp1 gene expression occurs very early in development, well before the onset of myelination, creating a conundrum with regard to the function of myelin proteolipid protein (PLP), one of the major proteins in compact myelin. Using PLP-EGFP mice to investigate Plp1 promoter activity, we found that, at very early time points, PLP-EGFP was expressed in Sox2+ undifferentiated precursors in the spinal cord ventricular zone (VZ), as well as in the progenitors of both neuronal and glial lineages. As development progressed, most PLP-EGFP-expressing cells gave rise to oligodendrocyte progenitor cells (OPCs). The expression of PLP-EGFP in the spinal cord was quite dynamic during development. PLP-EGFP was highly expressed as cells delaminated from the VZ. Expression was downregulated as cells moved laterally through the cord, and then robustly upregulated as OPCs differentiated into mature myelinating oligodendrocytes. The presence of PLP-EGFP expression in OPCs raises the question of its role in this migratory population. We crossed PLP-EGFP reporter mice into a Plp1-null background to investigate the role of PLP in early OPC development. In the absence of PLP, normal numbers of OPCs were generated and their distribution throughout the spinal cord was unaffected. However, the orientation and length of OPC processes during migration was abnormal in Plp1-null mice, suggesting that PLP plays a role either in the structural integrity of OPC processes or in their response to extracellular cues that orient process outgrowth.


Assuntos
Movimento Celular/fisiologia , Proteína Proteolipídica de Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Oligodendroglia/metabolismo , Animais , Western Blotting , Contagem de Células , Diferenciação Celular/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...