Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 43(9): 815-826, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32480506

RESUMO

Annual pasture legume species can vary more than 3-fold in their critical external phosphorus (P) requirement (i.e. P required for 90% of maximum yield). In this work we investigated the link between root morphology, P acquisition and critical external P requirement among pasture species. The root morphology acclimation of five annual pasture legumes and one grass species to low soil P availability was assessed in a controlled-environment study. The critical external P requirement of the species was low (Dactylis glomerata L., Ornithopus compressus L., Ornithopus sativus Brot.), intermediate (Biserrula pelecinus L., Trifolium hirtum All.) or high (Trifolium subterraneum L.). Root hair cylinder volumes (a function of root length, root hair length and average root diameter) were estimated in order to assess soil exploration and its impact on P uptake. Most species increased soil exploration in response to rates of P supply near or below their critical external P requirement. The legumes differed in how they achieved their maximum root hair cylinder volume. The main variables were high root length density, long root hairs and/or high specific root length. However, total P uptake per unit surface area of the root hair cylinder was similar for all species at rates of P supply below critical P. Species that maximised soil exploration by root morphology acclimation were able to prolong access to P in moderately P-deficient soil. However, among the species studied, it was those with an intrinsic capacity for a high root-hair-cylinder surface area (i.e. long roots and long root hairs) that achieved the lowest critical P requirement.

2.
Plant Cell Environ ; 34(3): 444-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21062319

RESUMO

It is unclear whether roots of acid-soil resistant plants have significant advantages, compared with acid-soil sensitive genotypes, when growing in high-strength, acid soils or in acid soils where macropores may allow the effects of soil acidity and strength to be avoided. The responses of root growth and morphology to soil acidity, soil strength and macropores by seedlings of five perennial grass genotypes differing in acid-soil resistance were determined, and the interaction of soil acidity and strength for growth and morphology of roots was investigated. Soil acidity and strength altered root length and architecture, root hair development, and deformed the root tip, especially in acid-soil sensitive genotypes. Root length was restricted to some extent by soil acidity in all genotypes, but the adverse impact of soil acidity on root growth by acid-soil resistant genotypes was greater at high levels of soil strength. Roots reacted to soil acidity when growing in macropores, but elongation through high-strength soil was improved. Soil strength can confound the effect of acidity on root growth, with the sensitivity of acid-resistant genotypes being greater in high-strength soils. This highlights the need to select for genotypes that resist both acidity and high soil strength.


Assuntos
Ácidos/química , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Solo/química , Genótipo , Poaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...