Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 403(6768): 410-4, 2000 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-10667789

RESUMO

Knowledge of natural long-term rainfall variability is essential for water-resource and land-use management in sub-humid regions of the world. In tropical Africa, data relevant to determining this variability are scarce because of the lack of long instrumental climate records and the limited potential of standard high-resolution proxy records such as tree rings and ice cores. Here we present a decade-scale reconstruction of rainfall and drought in equatorial east Africa over the past 1,100 years, based on lake-level and salinity fluctuations of Lake Naivasha (Kenya) inferred from three different palaeolimnological proxies: sediment stratigraphy and the species compositions of fossil diatom and midge assemblages. Our data indicate that, over the past millennium, equatorial east Africa has alternated between contrasting climate conditions, with significantly drier climate than today during the 'Medieval Warm Period' (approximately AD 1000-1270) and a relatively wet climate during the 'Little Ice Age' (approximately AD 1270-1850) which was interrupted by three prolonged dry episodes. We also find strong chronological links between the reconstructed history of natural long-term rainfall variation and the pre-colonial cultural history of east Africa, highlighting the importance of a detailed knowledge of natural long-term rainfall fluctuations for sustainable socio-economic development.


Assuntos
Cultura , Tempo (Meteorologia) , África Oriental , Diatomáceas , Desastres , Fósseis , História Antiga , Quênia , Paleontologia , Plantas , Chuva
2.
Environ Pollut ; 77(2-3): 253-62, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-15091966

RESUMO

Because of the considerable uncertainties associated with modeling complex ecosystem processes, it is essential that every effort be made to test model performance prior to relying on model projections for assessment of future surface water chemical response to environmental perturbation. Unfortunately, long-term chemical data with which to validate model performance are seldom available. The authors present here an evaluation of historical acidification of lake waters in the northeastern United States, and compare historical changes in a set of lakes to hindcasts from the same watershed model (MAGIC) used to estimate future changes in response to acidic deposition. The historical analyses and comparisons with MAGIC model hindcasts and forecasts of acid-base response demonstrate that the acidic and low-ANC lakes in this region are responsive to strong acid inputs. However, the model estimates suggest lakewater chemistry is more responsive to atmospheric inputs of sulfur than do the estimates based on paleolimnological historical analyses. A 'weight-of-evidence approach' that incorporates all available sources of information regarding acid-base response provides a more reasonable estimate of future change than an approach based on model projections alone. The results of these analyses have important implications for predicting future surface water chemical change in response to acidic deposition, establishing critical loads of atmospheric pollutants, and other environmental assessment activities where natural variation often exceeds the trends under investigation (high noise-to-signal ratio). Under these conditions, it is particularly important to evaluate future model projections in light of historical trends data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...