Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342903

RESUMO

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Assuntos
Panax notoginseng , Plantas Medicinais , Nitrogênio/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Simulação de Acoplamento Molecular , Melhoramento Vegetal , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Gene ; 901: 148163, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224922

RESUMO

BACKGROUND: Nitrogen (N) is an important macronutrient involved in the biosynthesis of primary and secondary metabolites in plants. However, the metabolic regulatory mechanism of low-N-induced triterpenoid saponin and flavonoid accumulation in rhizomatous medicinal Panax notoginseng (Burk.) F. H. Chen remains unclear. METHODS: To explore the potential regulatory mechanism and metabolic basis controlling the response of P. notoginseng to N deficiency, the transcriptome and metabolome were analysed in the roots. RESULTS: The N content was significantly reduced in roots of N0-treated P. notoginseng (0 kg·N·667 m-2). The C/N ratio was enhanced in the N-deficient P. notoginseng. N deficiency promotes the accumulation of amino acids (L-proline, L-leucine, L-isoleucine, L-norleucine, L-arginine, and L-citrulline) and sugar (arabinose, xylose, glucose, fructose, and mannose), thus providing precursor metabolites for the biosynthesis of flavonoids and triterpenoid saponins. Downregulation of key structural genes (PAL, PAL3, ACC1, CHS2, PPO, CHI3, F3H, DFR, and FGT), in particular with the key genes of F3H, involved in the flavonoid biosynthesis pathway possibly induced the decrease in flavonoid content with increased N supply. Notoginsenoside R1, ginsenoside Re, Rg1, Rd, F1, R1 + Rg1 + Rb1 and total triterpenoid saponins were enhanced in the N0 groups than in the N15 (15 kg·N·667 m-2) plants. Higher phosphoenolpyruvate (an intermediate of glycolyticwith pathway metabolism) and serine (an intermediate of photorespiration) levels induced by N deficiency possibly promote saponin biosynthesis through mevalonic acid (MVA) and methylerythritol (MEP) pathways. Genes (MVD2, HMGS, HMGR1, HMGR2, DXR, and HMGR1) encoding the primary enzymes HMGS, HMGR, DXR, and MVD in the MVA and MEP pathways were significantly upregulated in the N0-treated P. notoginseng. The saponin biosynthesis genes DDS, DDS, CYP716A52, CYP716A47, UGT74AE2, and FPS were upregulated in the N-deficient plants. Upregulation of genes involved in saponin biosynthesis promotes the accumulation of triterpenoid saponins in the N0-grown P. notoginseng. CONCLUSIONS: N deficiency enhances primary metabolisms, such as amino acids and sugar accumulation, laying the foundation for the synthesis of flavonoids and triterpenoid saponins in P. notoginseng. F3H, DDS, FPS, HMGR, HMGS and UGT74AE2 can be considered as candidates for functional characterisation of the N-regulated accumulation of triterpenoid saponins and flavonoids in future.


Assuntos
Panax notoginseng , Saponinas , Saponinas/farmacologia , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Flavonoides/metabolismo , Nitrogênio/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Aminoácidos/genética , Açúcares/metabolismo
3.
PeerJ ; 11: e14933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846464

RESUMO

Nitrogen (N) is an important macronutrient and is comprehensively involved in the synthesis of secondary metabolites. However, the interaction between N supply and crop yield and the accumulation of effective constituents in an N-sensitive medicinal plant Panax notoginseng (Burkill) F. H. Chen is not completely known. Morphological traits, N use and allocation, photosynthetic capacity and saponins accumulation were evaluated in two- and three-year-old P. notoginseng grown under different N regimes. The number and length of fibrous root, total root length and root volume were reduced with the increase of N supply. The accumulation of leaf and stem biomass (above-ground) were enhanced with increasing N supply, and LN-grown plants had the lowest root biomass. Above-ground biomass was closely correlated with N content, and the relationship between root biomass and N content was negatives in P. notoginseng (r = -0.92). N use efficiency-related parameters, NUE (N use efficiency, etc.), NC (N content in carboxylation system component) and P n (the net photosynthetic rate) were reduced in HN-grown P. notoginseng. SLN (specific leaf N), Chl (chlorophyll), NL (N content in light capture component) increased with an increase in N application. Interestingly, root biomass was positively correlated with NUE, yield and P n. Above-ground biomass was close negatively correlated with photosynthetic N use efficiency (PNUE). Saponins content was positively correlated with NUE and P n. Additionally, HN improved the root yield of per plant compared with LN, but reduced the accumulation of saponins, and the lowest yield of saponins per unit area (35.71 kg·hm-2) was recorded in HN-grown plants. HN-grown medicinal plants could inhibit the accumulation of root biomass by reducing N use and photosynthetic capacity, and HN-induced decrease in the accumulation of saponins (C-containing metabolites) might be closely related to the decline in N efficiency and photosynthetic capacity. Overall, N excess reduces the yield of root and C-containing secondary metabolites (active ingredient) in N-sensitive medicinal species such as P. notoginseng.


Assuntos
Panax notoginseng , Plantas Medicinais , Saponinas , Plantas Medicinais/metabolismo , Saponinas/metabolismo , Panax notoginseng/metabolismo , Nitrogênio/metabolismo , Biomassa
4.
Front Plant Sci ; 13: 819843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463455

RESUMO

Light intensity is highly heterogeneous in nature, and plants have evolved a series of strategies to acclimate to dynamic light due to their immobile lifestyles. However, it is still unknown whether there are differences in photoprotective mechanisms among different light-demanding plants in response to dynamic light, and thus the role of non-photochemical quenching (NPQ), electron transport, and light energy allocation of photosystems in photoprotection needs to be further understood in different light-demanding plants. The activities of photosystem II (PSII) and photosystem I (PSI) in shade-tolerant species Panax notoginseng, intermediate species Polygonatum kingianum, and sun-demanding species Erigeron breviscapus were comparatively measured to elucidate photoprotection mechanisms in different light-demanding plants under dynamic light. The results showed that the NPQ and PSII maximum efficiency (F v'/F m') of E. breviscapus were higher than the other two species under dynamic high light. Meanwhile, cyclic electron flow (CEF) of sun plants is larger under transient high light conditions since the slope of post-illumination, P700 dark reduction rate, and plastoquinone (PQ) pool were greater. NPQ was more active and CEF was initiated more readily in shade plants than the two other species under transient light. Moreover, sun plants processed higher quantum yield of PSII photochemistry (ΦPSII), quantum yield of photochemical energy conversion [Y(I)], and quantum yield of non-photochemical energy dissipation due to acceptor side limitation (Y(NA), while the constitutive thermal dissipation and fluorescence (Φf,d) and quantum yield of non-photochemical energy dissipation due to donor side limitation [Y(ND)] of PSI were higher in shade plants. These results suggest that sun plants had higher NPQ and CEF for photoprotection under transient high light and mainly allocated light energy through ΦPSII and ΦNPQ, while shade plants had a higher Φf,d and a larger heat dissipation efficiency of PSI donor. Overall, it has been demonstrated that the photochemical efficiency and photoprotective capacity are greater in sun plants under transient dynamic light, while shade plants are more sensitive to transient dynamic light.

5.
Front Plant Sci ; 13: 796931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242152

RESUMO

Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (P n) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (F v/F m), maximum photo-oxidation P700+ (P m), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.

6.
BMC Plant Biol ; 22(1): 85, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216546

RESUMO

BACKGROUND: For better understanding the mechanism of Reaumuria soongarica community formation in a salt stressed grassland ecosystem, we designed a field experiment to test how leaves salt secretion changes the competitive relationship between species in this plant communities. RESULTS: Among the three species (R. soongarica, Stipa glareosa and Allium polyrhizum) of the salt stressed grassland ecosystem, the conductivity of R. soongarica rhizosphere soil was the highest in five soil layers (0-55 cm depth). The high soil conductivity can increase the daily salt secretion rate of plant leaves of R. soongarica. In addition, we found the canopy size of R. soongarica was positively related to the distance from S. glareosa or A. polyrhizum. The salt-tolerance of R. soongarica was significantly higher than the other two herbs (S. glareosa and A. polyrhizum). Moreover, there was a threshold (600 µS/cm) for interspecific competition of plants mediated by soil conductivity. When the soil conductivity was lower than 600 µS/cm, the relative biomass of R. soongarica increased with the soil conductivity increase. CONCLUSIONS: The efficient salt secretion ability of leaves increases soil conductivity under the canopy. This leads the formation of a "saline island" of R. soongarica. Meanwhile R. soongarica have stronger salt tolerance than S. glareosa and A. polyrhizum. These promote the competitiveness of R. soongarica and inhibit interspecies competition advantage of the other two herbs (S. glareosa and A. polyrhizum) in the plant community. It is beneficial for R. soongarica to establish dominant communities in saline regions of desert grassland.


Assuntos
Folhas de Planta/metabolismo , Sais/metabolismo , Tamaricaceae/fisiologia , Allium/fisiologia , China , Clima Desértico , Pradaria , Poaceae/fisiologia , Rizosfera , Salinidade , Tolerância ao Sal , Solo/química , Tamaricaceae/crescimento & desenvolvimento
7.
Front Plant Sci ; 13: 1095726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714733

RESUMO

Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.

8.
Front Plant Sci ; 12: 718981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721452

RESUMO

Light is highly heterogeneous in natural conditions, and plants need to evolve a series of strategies to acclimate the dynamic light since it is immobile. The present study aimed to elucidate the response of light reaction of photosynthesis to dynamic sunflecks in a shade-tolerant species Panax notoginseng and to examine the regulatory mechanisms involved in an adaptation to the simulated sunflecks. When P. notoginseng was exposed to the simulated sunflecks, non-photochemical quenching (NPQ) increased rapidly to the maximum value. Moreover, in response to the simulated sunflecks, there was a rapid increase in light-dependent heat dissipation quantum efficiency of photosystem II (PSII) (ΦNPQ), while the maximum quantum yield of PSII under light (F v'/F m') declined. The relatively high fluorescence and constitutive heat dissipation quantum efficiency of PSII (Φf,d) in the plants exposed to transient high light (400, 800, and 1,600 µmol m-2 s-1) was accompanied by the low effective photochemical quantum yield of PSII (ΦPSII) after the dark recovery for 15 min, whereas the plants exposed to transient low light (50 µmol m-2 s-1) has been shown to lead to significant elevation in ΦPSII after darkness recovery. Furthermore, PSII fluorescence and constitutive heat dissipation electron transfer rate (J f,d) was increased with the intensity of the simulated sunflecks, the residual absorbed energy used for the non-net carboxylative processes (J NC) was decreased when the response of electron transfer rate of NPQ pathway of PSII (J NPQ) to transient low light is restricted. In addition, the acceptor-side limitation of PSI [Y(NA)] was increased, while the donor-side limitation of photosystems I (PSI) [Y(ND)] was decreased at transient high light conditions accompanied with active cyclic electron flow (CEF). Meanwhile, when the leaves were exposed to transient high light, the xanthophyll cycle (V cycle) was activated and subsequently, the J NPQ began to increase. The de-epoxidation state [(Z + A)/(V + A + Z)] was strongly correlated with NPQ in response to the sunflecks. In the present study, a rapid engagement of lutein epoxide (Lx) after the low intensity of sunfleck together with the lower NPQ contributed to an elevation in the maximum photochemical quantum efficiency of PSII under the light. The analysis based on the correlation between the CEF and electron flow devoted to Ribulose-1, 5-bisphosphate (RuBP) oxygenation (J O) indicated that at a high light intensity of sunflecks, the electron flow largely devoted to RuBP oxygenation would contribute to the operation of the CEF. Overall, photorespiration plays an important role in regulating the CEF of the shade-tolerant species, such as P. notoginseng in response to transient high light, whereas active Lx cycle together with the decelerated NPQ may be an effective mechanism of elevating the maximum photochemical quantum efficiency of PSII under light exposure to transient low light.

9.
Photosynth Res ; 147(3): 283-300, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33587246

RESUMO

Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of high-N-driven inhibition on photosynthetic efficiency and photoprotection is still unclear in the shade-tolerant and N-sensitive species such as Panax notoginseng. Leaf chlorophyll (Chl) content, Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity and content, N allocation in the photosynthetic apparatus, photosynthetic performance and Chl fluorescence were comparatively analyzed in a shade-tolerant and N-sensitive species P. notoginseng grown under the levels of moderate nitrogen (MN) and high nitrogen (HN). The results showed that Rubisco content, Chl content and specific leaf nitrogen (SLN) were greater in the HN individuals. Rubisco activity, net photosynthetic rate (Anet), photosynthetic N use efficiency (PNUE), maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) were lower when plants were exposed to HN as compared with ones to MN. A large proportion of leaf N was allocated to the carboxylation component under the levels of MN. More N was only served as a form of N storage and not contributed to photosynthesis in HN individuals. Compared with the MN plants, the maximum quantum yield of photosystem II (Fv/Fm), non-photochemical quenching of PSII (NPQ), effective quantum yield and electron transport rate were obviously reduced in the HN plants. Cycle electron flow (CEF) was considerably enhanced in the MN individuals. There was not a significant difference in maximum photo-oxidation P700+ (Pm) between the HN and MN individuals. Most importantly, the HN individuals showed higher K phase in the fast chlorophyll fluorescence induction kinetic curve (OJIP kinetic curve) than the MN ones. The results obtained suggest that photosynthetic capacity might be primarily inhibited by the inactivated Rubisco in the HN individuals, and HN-induced depression of photoprotection might be caused by the photodamage to the donor side of PSII oxygen-evolving complex.


Assuntos
Nitrogênio/administração & dosagem , Panax notoginseng/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila , Luz , Panax notoginseng/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo
10.
Plant Physiol Biochem ; 154: 564-580, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32912490

RESUMO

The medicinal plant Panax notoginseng is considered a promising source of secondary metabolites due to its saponins. However, there are relatively few studies on the response of saponins to nitrogen (N) availability and the mechanisms underlying the N-driven regulation of saponins. Saponins content and saponins -related genes were analyzed in roots of P. notoginseng grown under low N (LN), moderate N (MN) and high N (HN). Saponins was obviously increased in LN individuals with a reduction in ß-glucosidase activity. LN facilitated root architecture and N uptake rate. Compared with the LN individuals, 2872 and 1122 genes were incorporated into as differently expressed genes (DEGs) in the MN and HN individuals. Clustering and enrichment showed that DEGs related to "carbohydrate biosynthesis", "plant hormone signal transduction", "terpenoid backbone biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis" were enriched. The up-regulation of some saponins-related genes and microelement transporters was found in LN plants. Whereas the expression of IPT3, AHK4 and GS2 in LN plants fell far short of that in HN ones. Anyways, LN-induced accumulation of C-based metabolites as saponins might derive from the interaction between N and phytohormones in processing of N acquisition, and HN-induced reduction of saponins might be result from an increase in the form of ß-glucosidase activity and N-dependent cytokinins (CKs) biosynthesis.


Assuntos
Panax notoginseng/química , Plantas Medicinais/química , Saponinas/análise , Transcriptoma , Nitrogênio , Panax notoginseng/genética , Raízes de Plantas/química , Raízes de Plantas/genética
11.
BMC Plant Biol ; 20(1): 273, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32593292

RESUMO

BACKGROUND: Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). RESULTS: Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi). LN- and HN-grown individuals allocated less N to light-harvesting system (NL) and carboxylation system (NC), respectively. N surplus negatively affected the expression of genes in Car biosynthesis (GGPS, DXR, PSY, IPI and DXS). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes (FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2, RPI4, CAB and PetE were repressed in the HN-grown plants. CONCLUSIONS: LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco.


Assuntos
Nitrogênio/metabolismo , Panax notoginseng/fisiologia , Fotossíntese , Transporte de Elétrons , Genes de Plantas , Luz , Panax notoginseng/genética , Fotossíntese/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
12.
Light Sci Appl ; 8: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798847

RESUMO

For long distance optical interconnects, 1.3-µm surface-emitting lasers are key devices. However, the low output power of several milliwatts limits their application. In this study, by introducing a two-dimensional photonic-crystal and using InAs quantum dots as active materials, a continuous-wave, 13.3-mW output power, 1.3-µm wavelength, room-temperature surface-emitting laser is achieved. In addition, such a device can be operated at high temperatures of up to 90 °C. The enhanced output power results from the flat band structure of the photonic crystal and an extra feedback mechanism. Surface emission is realized by photonic crystal diffraction and thus the distributed Bragg reflector is eliminated. The proposed device provides a means to overcome the limitations of low-power 1.3-µm surface-emitting lasers and increase the number of applications thereof.

13.
Nanomaterials (Basel) ; 9(3)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871079

RESUMO

The nonlinearity of semiconductor quantum dots under the condition of low light levels has many important applications. In this study, linear absorption, self-Kerr nonlinearity, fifth-order nonlinearity and cross-Kerr nonlinearity of multiple quantum dots, which are coupled by multiple tunneling, are investigated by using the probability amplitude method. It is found that the linear and nonlinear properties of multiple quantum dots can be modified by the tunneling intensity and energy splitting of the system. Most importantly, it is possible to realize enhanced self-Kerr nonlinearity, fifth-order nonlinearity and cross-Kerr nonlinearity with low linear absorption by choosing suitable parameters for the multiple quantum dots. These results have many potential applications in nonlinear optics and quantum information devices using semiconductor quantum dots.

14.
Sci Rep ; 9(1): 2607, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796302

RESUMO

A coherently prepared asymmetric double semiconductor quantum well (QW) is proposed to realize parity-time (PT) symmetry. By appropriately tuning the laser fields and the pertinent QW parameters, PT-symmetric optical potentials are obtained by three different methods. Such a coherent QW system is reconfigurable and controllable, and it can generate new approaches of theoretically and experimentally studying PT-symmetric phenomena.

15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-778703

RESUMO

Objective To describe and analyze the level and variation trend of mortality of female genital malignancies in China from 2004 to 2016, so as to provide scientific evidence for the formulation and implementation of cancer prevention and control measures.Methods The mortality data of cervical cancer, corpus cancer and ovarian cancer were selected from the mortality monitoring data of the national disease monitoring system, the crude mortality and standardized mortality rates were calculated respectively, the annual change trend was analyzed by Joinpoint software.Results From 2004 to 2016, the mortality rate of cervical cancer in Chinese women increased significantly. The mortality trend obviously accelerated after 2011(annual percent change, APC = 13.7%), and the mortality rate in rural areas was higher than that in urban areas. The mortality rate of corpus cancer was relatively stable, and showed a downward trend after 2013(APC=-23.5%). Ovarian cancer mortality rate slightly increased, but the death trend was not statistically significant.Conclusions From 2004 to 2016, the mortality of corpus cancer in Chinese women had improved, the mortality of cervical cancer was still relatively serious, and there were differences between urban and rural areas.

16.
Zhongguo Zhong Yao Za Zhi ; 43(16): 3307-3314, 2018 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-30200734

RESUMO

In the present study, in vitro nematicidal activity of chemical compositions from the methanol extract of Aristolochia mollissima fruits against the second stage juvenile (J2) of Meloidogyne javanica have been investigated. By using silica gel column chromatography, Sephadex LH-20 gel column chromatography methods, fourteen compounds were isolated from methanol extract of A. mollissima fruits. On the basis of spectral data, their structures were identified as aristolochic acid I (1), aristololactam I (2), aristololactam W (3), manshurolide (4), aristolactone (5), saropeptate (6), 2-(1-oxononadecyl)aminobenzoic acid (7), ß-sitosterol (8), sitostanetriol (9), daucosterol (10), formosolic acid (11), 5-ethyl-8,8-dimethyl nonanal (12), tetracosanoic acid,2,3-dihydroxypropyl ester (13) and tetracosanoic acid (14), respectively. It is the first time that compounds 2-4, 6-7, 9-14 are separated from A. mollissima. Furthermore, nematicidal activity of fourteen monomer compounds against J2 Meloidogyne javanica in vitro were analyzed. The compounds 1-3, 6-7 exhibited different degrees toxic effects on J2 M. javanica in vitro, especially for aristolochic acid I (1), aristololactam I (2), aristololactam W (3) with the LC50 values of 45.25, 36.56, 119.46 mg·L⁻¹ after 96 h. So, A. mollissima have the potential value of developing new plant source to control root nematodes.


Assuntos
Antinematódeos/farmacologia , Aristolochia/química , Frutas/química , Compostos Fitoquímicos/farmacologia , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação
17.
Nat Prod Res ; 32(21): 2505-2509, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29313366

RESUMO

Three new aristololactam derivatives, aristololactam W-Y (1-3), and three known compounds (4-6) were isolated from the fruits of Aristolochia contorta Bunge. Compounds 1 and 2 represent the first example of an N-CH2OCH3 aristololactam derivative from natural products. Their structures were elucidated by 1D/2D NMR and HRESIMS spectra. All of the isolated compounds were evaluated for their insecticidal activity against 4th instar larvae of Aedes aegypti. Compound 4 displayed insecticidal activity with LC50 value of 3.54 µg/mL.


Assuntos
Aristolochia/química , Ácidos Aristolóquicos/isolamento & purificação , Inseticidas/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Aedes , Animais , China , Frutas/química , Larva , Estrutura Molecular
18.
Opt Express ; 26(25): 32918-32930, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645452

RESUMO

An asymmetric double semiconductor quantum well is proposed to realize two-dimensional parity-time (PT) symmetry and an electromagnetically induced grating. In such a nontrivial grating with PT symmetry, the incident probe photons can be diffracted to selected angles depending on the spatial relationship of the real and imaginary parts of the refractive index. Such results are due to the interference mechanism between the amplitude and phase of the grating and can be manipulated by the probe detuning, modulation amplitudes of the standing wave fields, and interaction length of the medium. Such a system may lead to new approaches of observing PT-symmetry-related phenomena and has potential applications in photoelectric devices requiring asymmetric light transport using semiconductor quantum wells.

19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-690382

RESUMO

In the present study, in vitro nematicidal activity of chemical compositions from the methanol extract of Aristolochia mollissima fruits against the second stage juvenile (J2) of Meloidogyne javanica have been investigated. By using silica gel column chromatography, Sephadex LH-20 gel column chromatography methods, fourteen compounds were isolated from methanol extract of A. mollissima fruits. On the basis of spectral data, their structures were identified as aristolochic acid I (1), aristololactam I (2), aristololactam W (3), manshurolide (4), aristolactone (5), saropeptate (6), 2-(1-oxononadecyl)aminobenzoic acid (7), -sitosterol (8), sitostanetriol (9), daucosterol (10), formosolic acid (11), 5-ethyl-8,8-dimethyl nonanal (12), tetracosanoic acid,2,3-dihydroxypropyl ester (13) and tetracosanoic acid (14), respectively. It is the first time that compounds 2-4, 6-7, 9-14 are separated from A. mollissima. Furthermore, nematicidal activity of fourteen monomer compounds against J2 Meloidogyne javanica in vitro were analyzed. The compounds 1-3, 6-7 exhibited different degrees toxic effects on J2 M. javanica in vitro, especially for aristolochic acid I (1), aristololactam I (2), aristololactam W (3) with the LC₅₀ values of 45.25, 36.56, 119.46 mg·L⁻¹ after 96 h. So, A. mollissima have the potential value of developing new plant source to control root nematodes.

20.
Appl Opt ; 55(27): 7497-502, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27661574

RESUMO

InGaAs/InP single-photon avalanche diodes (SPADs) are widely used in practical applications requiring near-infrared photon counting such as quantum key distribution (QKD). Photon detection efficiency and dark count rate are the intrinsic parameters of InGaAs/InP SPADs, due to the fact that their performances cannot be improved using different quenching electronics given the same operation conditions. After modeling these parameters and developing a simulation platform for InGaAs/InP SPADs, we investigate the semiconductor structure design and optimization. The parameters of photon detection efficiency and dark count rate highly depend on the variables of absorption layer thickness, multiplication layer thickness, excess bias voltage, and temperature. By evaluating the decoy-state QKD performance, the variables for SPAD design and operation can be globally optimized. Such optimization from the perspective of specific applications can provide an effective approach to design high-performance InGaAs/InP SPADs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...