Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 6(1): txab230, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35047760

RESUMO

The beef cow-calf sector accounts for 70% of feed consumed and greenhouse gases emitted for the beef industry, but there is no straightforward method to measure biological efficiency in grazing conditions. The objective of this study was to evaluate a mathematical nutrition model to estimate the feed intake and biological efficiency of mature beef cows. Data from dams (N = 160) and their second and third progeny (312 pairs) were collected from 1953 through 1980. Individual feed intake was measured at 28-d intervals year-round for dams and during 240-d lactation for progeny. Body weights of progeny were measured at 28-d intervals from birth to weaning, and of dams at parturition and weaning each production cycle. The milk yield of dams was measured at 14-d intervals. Dam metabolizable energy intake (DMEI) and milk energy yield (MEL) of each cow were predicted using the Cattle Value Discovery System beef cow (CVDSbc) model for each parity. Biological efficiency (Mcal/kg) was computed as the ratio of observed or predicted DMEI to observed calf weaning weight (PWW). Pearson correlation coefficients were computed using corr.test function and model evaluation was performed using the epiR function in R software. Average (SD) dam weight, PWW, DMEI, and observed MEL were 527 (86) kg, 291 (47) kg, 9584 (2701) Mcal/production cycle, and 1029 (529) Mcal, respectively. Observed and predicted DMEI (r = 0.93 and 0.91), and observed and predicted MEL (r = 0.58 and 0.59) were positively correlated for progeny 2 and 3, respectively. The CVDSbc model under-predicted DMEI (mean bias [MB] = 1,120 ± 76 Mcal, 11.7% of observed value) and MEL (MB = 30 ± 25 Mcal, 2.9% of observed value). Observed and predicted progeny feed intake were not correlated (r = 0.01, P-value = 0.79). Observed and predicted biological efficiency were positively correlated (r = 0.80 and 0.80, P-value ≤ 0.05) for parity 2 and 3, respectively, and the CVDSbc model under-predicted biological efficiency by 11% (MB = 3.59 ± 0.25 Mcal/kg). The CVDSbc provides reasonable predictions of feed intake and biological efficiency of mature beef cows, but further refinement of the relationship between calf feed intake and milk yield is recommended to improve predictions. Mathematical nutrition models can assist in the discovery of the biological efficiency of mature beef cows.

2.
Transl Anim Sci ; 5(3): txab111, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34345800

RESUMO

Understanding the relationships between feed efficiency traits measured in different stages of production is necessary to improve feed efficiency across the beef value chain. The objective of this study was to evaluate relationships among feed efficiency traits measured as growing heifers and breeding females and in their progeny in three full production cycles, and relationships of dam residual feed intake (RFI) with lifetime and lifecycle cow efficiency traits. Data were collected on 160 mixed-breed heifers from 240 d of age to weaning of their third progeny, and postweaning performance of progeny until harvest in experiments initiated in 1953, 1954, 1959, 1964, 1969, and 1974. Individual feed offered was recorded daily, and feed refusals measured every 28 d. Milk yield was measured at 14-d intervals throughout lactation by machine or hand milking. Females and progeny were weighed at 28-d intervals and progeny were harvested at a constant endpoint of live grade or age depending upon the experiment. Feed efficiency traits of RFI and residual BW gain (RG) were computed as the residual from linear regression for developing heifers, dams (RFI and residual energy-corrected milk [RECM]), and postweaning progeny. Feed:gain ratio (FCR) was computed for developing heifers and postweaning progeny, and feed:milk energy ratio (FME) was computed for dams. Various measures of cow efficiency were calculated on either a life cycle or lifetime basis using ratios of progeny and dam weight outputs to progeny and dam feed inputs. Pearson correlations were computed among traits adjusted for a random year-breed-diet group effect. Heifer RFI (0.74) and RG (-0.32) were correlated (P ≤ 0.05) with dam RFI in parity 1 only, but were not correlated (P > 0.05) with dam RECM in any parity. Heifer RFI was correlated (P ≤ 0.05) with progeny RFI (0.17) in parity 3 only. Heifer FCR was not correlated with dam FME or progeny FCR in any parity. Dam RFI was weakly correlated (r = 0.25 to 0.36; P ≤ 0.05) among parities, whereas dam FME and RECM were strongly correlated (r = 0.49 to 0.72; P ≤ 0.05) among parities. Dam RFI in parity 1 and 2 was weakly correlated (r = -0.20 to -0.33; P ≤ 0.05) with cow efficiency ratios that included dam weight as an output, whereas dam RFI in parity 3 was not correlated with any cow efficiency ratio. In conclusion, feed efficiency traits were poorly correlated across production segments, but moderately repeatable across production cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...