Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 280: 130675, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33971413

RESUMO

Degradation of the Acid Black 210 dye (AB210) in synthetic and industrial effluent samples was performed, for the first time, using a heterogeneous electro-Fenton (EF) process with a CoFe2O4/NOM magnetic hybrid catalyst (Hb200). The technique was compared with electrochemical oxidation using electrogenerated hydrogen peroxide (AO-H2O2). The catalyst was synthesized by the sol-gel technique, using water with a high content of natural organic matter (NOM) as an eco-friendly solvent. Analyses using XRD, FTIR, and TEM showed the formation of hybrid nanostructures with average size of 4.85 nm. Electrochemical assays were performed with a GDE/BDD electrode pair, electrogenerated H2O2, and current density of 45.4 mA cm-2. For the synthetic solution of AB210 at pH 3, the EF process presented higher efficiency, compared to AO-H2O2, with the optimum condition achieved using a lower mass of the catalyst (30 mg) and a higher concentration of the dye (55 mg L-1). The EF method also showed superior performance in the treatment of an industrial effluent with high organic load, at pH 6, with almost complete mineralization of AB210 (95%) in 7 h, while the AO-H2O2 process achieved 82% mineralization. The Hb200 hybrid maintained excellent catalytic activity during reuse in 3 cycles, with only 10% lower mineralization efficiency in the last cycle. GC-MS analysis showed that most of the contaminants in the effluent, including bis(2-ethylhexyl) phthalate, one of the most toxic, were eliminated or transformed after the EF treatment with Hb200.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Compostos Azo , Corantes , Eletrodos , Peróxido de Hidrogênio , Ferro , Fenômenos Magnéticos , Naftalenossulfonatos , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 334: 76-85, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28402897

RESUMO

This work describes the removal of chromium ions from industrial effluent using a hybrid magnetic adsorbent, CoFe2O4/NOM, synthesized using water rich in natural organic matter. The hybrid obtained at ambient temperature (HbAmb) was calcined at 200, 400, and 800°C for 2h, and formation of the cobalt ferrite phase was confirmed by XRD, which indicated the presence of NOM in the structure of the material. Removal tests showed that HbAmb provided efficient removal of chromium at the natural pH of the effluent, while the other materials were effective at pH 6. Evaluation of the kinetics showed excellent performance of the process, with 70-87% removal in 20min, which provided a high degree of flexibility. The hybrid showed high removal during five reuse cycles, ranging from 96% in the first cycle to 82% in the final. The matrices containing the saturated adsorbent (HbAmb_Sat) and recovered chromium ions (CrD) showed high performance in the catalytic reduction of 4-nitrophenol, with conversion rates of 99.9% in short periods of time, as well as excellent potential for reuse in three cycles. The results demonstrated that the production of a technological material and its use for remediation could be achieved in an ecologically sustainable manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...