Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 6(1): 14-21, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123933

RESUMO

OBJECTIVE: Increased fructose consumption is a contributor to the burgeoning epidemic of non-alcoholic fatty liver disease (NAFLD). Recent evidence indicates that the metabolic hormone FGF21 is regulated by fructose consumption in humans and rodents and may play a functional role in this nutritional context. Here, we sought to define the mechanism by which fructose ingestion regulates FGF21 and determine whether FGF21 contributes to an adaptive metabolic response to fructose consumption. METHODS: We tested the role of the transcription factor carbohydrate responsive-element binding protein (ChREBP) in fructose-mediated regulation of FGF21 using ChREBP knockout mice. Using FGF21 knockout mice, we investigated whether FGF21 has a metabolic function in the context of fructose consumption. Additionally, we tested whether a ChREBP-FGF21 interaction is likely conserved in human subjects. RESULTS: Hepatic expression of ChREBP-ß and Fgf21 acutely increased 2-fold and 3-fold, respectively, following fructose gavage, and this was accompanied by increased circulating FGF21. The acute increase in circulating FGF21 following fructose gavage was absent in ChREBP knockout mice. Induction of ChREBP-ß and its glycolytic, fructolytic, and lipogenic gene targets were attenuated in FGF21 knockout mice fed high-fructose diets, and this was accompanied by a 50% reduction in de novo lipogenesis a, 30% reduction VLDL secretion, and a 25% reduction in liver fat compared to fructose-fed controls. In human subjects, serum FGF21 correlates with de novo lipogenic rates measured by stable isotopic tracers (R = 0.55, P = 0.04) consistent with conservation of a ChREBP-FGF21 interaction. After 8 weeks of high-fructose diet, livers from FGF21 knockout mice demonstrate atrophy and fibrosis accompanied by molecular markers of inflammation and stellate cell activation; whereas, this did not occur in controls. CONCLUSIONS: In summary, ChREBP and FGF21 constitute a signaling axis likely conserved in humans that mediates an essential adaptive response to fructose ingestion that may participate in the pathogenesis of NAFLD and liver fibrosis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Frutose/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Frutose/administração & dosagem , Glicólise , Hepatócitos/metabolismo , Humanos , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais
2.
Gastroenterology ; 147(5): 1073-83.e6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25083607

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease is a common consequence of human and rodent obesity. Disruptions in lipid metabolism lead to accumulation of triglycerides and fatty acids, which can promote inflammation and fibrosis and lead to nonalcoholic steatohepatitis. Circulating levels of fibroblast growth factor (FGF)21 increase in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis; therefore, we assessed the role of FGF21 in the progression of murine fatty liver disease, independent of obesity, caused by methionine and choline deficiency. METHODS: C57BL/6 wild-type and FGF21-knockout (FGF21-KO) mice were placed on methionine- and choline-deficient (MCD), high-fat, or control diets for 8-16 weeks. Mice were weighed, and serum and liver tissues were collected and analyzed for histology, levels of malondialdehyde and liver enzymes, gene expression, and lipid content. RESULTS: The MCD diet increased hepatic levels of FGF21 messenger RNA more than 50-fold and serum levels 16-fold, compared with the control diet. FGF21-KO mice had more severe steatosis, fibrosis, inflammation, and peroxidative damage than wild-type C57BL/6 mice. FGF21-KO mice had reduced hepatic fatty acid activation and ß-oxidation, resulting in increased levels of free fatty acid. FGF21-KO mice given continuous subcutaneous infusions of FGF21 for 4 weeks while on an MCD diet had reduced steatosis and peroxidative damage, compared with mice not receiving FGF21. The expression of genes that regulate inflammation and fibrosis were reduced in FGF21-KO mice given FGF21, similar to those of wild-type mice. CONCLUSIONS: FGF21 regulates fatty acid activation and oxidation in livers of mice. In the absence of FGF21, accumulation of inactivated fatty acids results in lipotoxic damage and increased steatosis.


Assuntos
Deficiência de Colina/complicações , Ácidos Graxos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Modelos Animais de Doenças , Progressão da Doença , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Hepatite/genética , Hepatite/metabolismo , Hepatite/prevenção & controle , Mediadores da Inflamação/metabolismo , Infusões Subcutâneas , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , RNA Mensageiro/metabolismo , Proteínas Recombinantes/administração & dosagem , Índice de Gravidade de Doença , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...