Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Phytopathology ; 114(5): 837-842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38815216

RESUMO

Plant diseases significantly impact food security and food safety. It was estimated that food production needs to increase by 50% to feed the projected 9.3 billion people by 2050. Yet, plant pathogens and pests are documented to cause up to 40% yield losses in major crops, including maize, rice, and wheat, resulting in annual worldwide economic losses of approximately US$220 billion. Yield losses due to plant diseases and pests are estimated to be 21.5% (10.1 to 28.1%) in wheat, 30.3% (24.6 to 40.9%) in rice, and 22.6% (19.5 to 41.4%) in maize. In March 2023, The American Phytopathological Society (APS) conducted a survey to identify and rank key challenges in plant pathology in the next decade. Phytopathology subsequently invited papers that address those key challenges in plant pathology, and these were published as a special issue. The key challenges identified include climate change effect on the disease triangle and outbreaks, plant disease resistance mechanisms and its applications, and specific diseases including those caused by Candidatus Liberibacter spp. and Xylella fastidiosa. Additionally, disease detection, natural and man-made disasters, and plant disease control strategies were explored in issue articles. Finally, aspects of open access and how to publish articles to maximize the Findability, Accessibility, Interoperability, and Reuse of digital assets in plant pathology were described. Only by identifying the challenges and tracking progress in developing solutions for them will we be able to resolve the issues in plant pathology and ultimately ensure plant health, food security, and food safety.


Assuntos
Produtos Agrícolas , Doenças das Plantas , Patologia Vegetal , Doenças das Plantas/microbiologia , Produtos Agrícolas/microbiologia , Resistência à Doença , Mudança Climática , Xylella
2.
Phytopathology ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723169

RESUMO

This scientometric study reviews the scientific literature and CABI distribution records published in 2022 to find evidence of major disease outbreaks and first reports of pathogens in new locations or on new hosts. This is the second time we have done this, and this study builds on our work documenting and analysing reports from 2021. Pathogens with three or more articles identified in 2022 literature were: Xylella fastidiosa, Bursaphelenchus xylophilus, Meloidogyne species complexes, Candidatus Liberibacter asiaticus, Raffaelea lauricola, Fusarium oxysporum formae specialis and Puccinia graminis f. sp. tritici. Our review of CABI distribution records found 29 pathogens with confirmed first reports in 2022. Pathogens with four or more first reports were: Meloidogyne species complexes, Pantoea ananatis, grapevine red globe virus and Thekopsora minima. Analysis of the proportion of new distribution records from 2022 indicated that grapevine red globe virus, sweet potato chlorotic stunt virus and Ca. Phytoplasma vitis may have been actively spreading. As we saw last year, there was little overlap between the pathogens identified by reviewing scientific literature versus distribution records. Strikingly, too, there was also no overlap between species assessed to be actively spreading in this year's study and those identified last year. In general, introduction of new pathogens and outbreaks of extant pathogens threaten food security and ecosystem services. Continued monitoring of these threats is essential to support phytosanitary measures intended to prevent pathogen introductions and management of threats within a country.

3.
Ecol Evol ; 14(5): e11308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706934

RESUMO

Increased imports of plants and timber through global trade networks provide frequent opportunities for the introduction of novel plant pathogens that can cross-over from commercial to natural environments, threatening native species and ecosystem functioning. Prevention or management of such outbreaks relies on a diversity of cross-sectoral stakeholders acting along the invasion pathway. Yet, guidelines are often only produced for a small number of stakeholders, missing opportunities to consider ways to control outbreaks in other parts of the pathway. We used the infection of common juniper with the invasive pathogen Phytophthora austrocedri as a case study to explore the utility of decision tools for managing outbreaks of plant pathogens in the wider environment. We invited stakeholders who manage or monitor juniper populations or supply plants or management advice to participate in a survey exploring their awareness of, and ability to use, an existing decision tree produced by a coalition of statutory agencies augmented with new distribution maps designed by the authors. Awareness of the decision tree was low across all stakeholder groups including those planting juniper for restoration purposes. Stakeholders requested that decision tools contain greater detail about environmental conditions that increase host vulnerability to the pathogen, and clearer examples of when management practices implicated in pathogen introduction or spread should not be adopted. The results demonstrate the need to set clear objectives for the purpose of decision tools and to frame and co-produce them with many different stakeholders, including overlooked groups, such as growers and advisory agents, to improve management of pathogens in the wider environment.

4.
Am Nat ; 202(5): E130-E146, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37963120

RESUMO

AbstractDisease control can induce both demographic and evolutionary responses in host-parasite systems. Foreseeing the outcome of control therefore requires knowledge of the eco-evolutionary feedback between control and system. Previous work has assumed that control strategies have a homogeneous effect on the parasite population. However, this is not true when control targets those traits that confer to the parasite heterogeneous levels of resistance, which can additionally be related to other key parasite traits through evolutionary trade-offs. In this work, we develop a minimal model coupling epidemiological and evolutionary dynamics to explore possible trait-dependent effects of control strategies. In particular, we consider a parasite expressing continuous levels of a trait-determining resource exploitation and a control treatment that can be either positively or negatively correlated with that trait. We demonstrate the potential of trait-dependent control by considering that the decision maker may want to minimize both the damage caused by the disease and the use of treatment, due to possible environmental or economic costs. We identify efficient strategies showing that the optimal type of treatment depends on the amount applied. Our results pave the way for the study of control strategies based on evolutionary constraints, such as collateral sensitivity and resistance costs, which are receiving increasing attention for both public health and agricultural purposes.


Assuntos
Parasitos , Animais , Evolução Biológica , Interações Hospedeiro-Parasita
5.
J R Soc Interface ; 20(201): 20220685, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37073520

RESUMO

Increasing fungicide dose tends to lead to better short-term control of plant diseases. However, high doses select more rapidly for fungicide resistant strains, reducing long-term disease control. When resistance is qualitative and complete-i.e. resistant strains are unaffected by the chemical and resistance requires only a single genetic change-using the lowest possible dose ensuring sufficient control is well known as the optimal resistance management strategy. However, partial resistance (where resistant strains are still partially suppressed by the fungicide) and quantitative resistance (where a range of resistant strains are present) remain ill-understood. Here, we use a model of quantitative fungicide resistance (parametrized for the economically important fungal pathogen Zymoseptoria tritici) which handles qualitative partial resistance as a special case. Although low doses are optimal for resistance management, we show that for some model parametrizations the resistance management benefit does not outweigh the improvement in control from increasing doses. This holds for both qualitative partial resistance and quantitative resistance. Via a machine learning approach (a gradient-boosted trees model combined with Shapley values to facilitate interpretability), we interpret the effect of parameters controlling pathogen mutation and characterising the fungicide, in addition to the time scale of interest.


Assuntos
Farmacorresistência Fúngica , Aprendizado de Máquina , Modelos Biológicos , Antifúngicos/química , Antifúngicos/farmacologia , Micoses/tratamento farmacológico , Micoses/epidemiologia , Humanos
6.
Phytopathology ; 113(7): 1141-1158, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36935375

RESUMO

A synoptic review of plant disease epidemics and outbreaks was made using two complementary approaches. The first approach involved reviewing scientific literature published in 2021, in which quantitative data related to new plant disease epidemics or outbreaks were obtained via surveys or similar methodologies. The second approach involved retrieving new records added in 2021 to the CABI Distribution Database, which contains over a million global geographic records of organisms from over 50,000 species. The literature review retrieved 186 articles, describing studies in 62 categories (pathogen species/species complexes) across more than 40 host species on six continents. Pathogen species with more than five articles were Bursaphelenchus xylophilus, 'Candidatus Liberibacter asiaticus', cassava mosaic viruses, citrus tristeza virus, Erwinia amylovora, Fusarium spp. complexes, F. oxysporum f. sp. cubense, Magnaporthe oryzae, maize lethal necrosis co-infecting viruses, Meloidogyne spp. complexes, Pseudomonas syringae pvs., Puccinia striiformis f. sp. tritici, Xylella fastidiosa, and Zymoseptoria tritici. Automated searches of the CABI Distribution Database identified 617 distribution records new in 2021 of 283 plant pathogens. A further manual review of these records confirmed 15 pathogens reported in new locations: apple hammerhead viroid, apple rubbery wood viruses, Aphelenchoides besseyi, Biscogniauxia mediterranea, 'Ca. Liberibacter asiaticus', citrus tristeza virus, Colletotrichum siamense, cucurbit chlorotic yellows virus, Erwinia rhapontici, Erysiphe corylacearum, F. oxysporum f. sp. cubense Tropical race 4, Globodera rostochiensis, Nothophoma quercina, potato spindle tuber viroid, and tomato brown rugose fruit virus. Of these, four pathogens had at least 25% of all records reported in 2021. We assessed two of these pathogens-tomato brown rugose fruit virus and cucurbit chlorotic yellows virus-to be actively emerging in/spreading to new locations. Although three important pathogens-'Ca. Liberibacter asiaticus', citrus tristeza virus, and F. oxysporum f. sp. cubense-were represented in the results of both our literature review and our interrogation of the CABI Distribution Database, in general, our dual approaches revealed distinct sets of plant disease outbreaks and new records, with little overlap. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Doenças das Plantas , Surtos de Doenças
7.
iScience ; 26(3): 106116, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36994192

RESUMO

We used a green fluorescent protein marker gene for paternity analysis to determine if virus infection affected male reproductive success of tomato in bumblebee-mediated cross-pollination under glasshouse conditions. We found that bumblebees that visited flowers of infected plants showed a strong preference to subsequently visit flowers of non-infected plants. The behavior of the bumblebees to move toward non-infected plants after pollinating virus-infected plants appears to explain the paternity data, which demonstrate a statistically significant ∼10-fold bias for fertilization of non-infected plants with pollen from infected parents. Thus, in the presence of bumblebee pollinators, CMV-infected plants exhibit enhanced male reproductive success.

8.
PLoS Comput Biol ; 19(3): e1010969, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976791

RESUMO

Plant pathogens respond to selection pressures exerted by disease management strategies. This can lead to fungicide resistance and/or the breakdown of disease-resistant cultivars, each of which significantly threaten food security. Both fungicide resistance and cultivar breakdown can be characterised as qualitative or quantitative. Qualitative (monogenic) resistance/breakdown involves a step change in the characteristics of the pathogen population with respect to disease control, often caused by a single genetic change. Quantitative (polygenic) resistance/breakdown instead involves multiple genetic changes, each causing a smaller shift in pathogen characteristics, leading to a gradual alteration in the effectiveness of disease control over time. Although resistance/breakdown to many fungicides/cultivars currently in use is quantitative, the overwhelming majority of modelling studies focus on the much simpler case of qualitative resistance. Further, those very few models of quantitative resistance/breakdown which do exist are not fitted to field data. Here we present a model of quantitative resistance/breakdown applied to Zymoseptoria tritici, which causes Septoria leaf blotch, the most prevalent disease of wheat worldwide. Our model is fitted to data from field trials in the UK and Denmark. For fungicide resistance, we show that the optimal disease management strategy depends on the timescale of interest. Greater numbers of fungicide applications per year lead to greater selection for resistant strains, although over short timescales this can be oset by the increased control oered by more sprays. However, over longer timescales higher yields are attained using fewer fungicide applications per year. Deployment of disease-resistant cultivars is not only a valuable disease management strategy, but also oers the secondary benefit of protecting fungicide effectiveness by delaying the development of fungicide resistance. However, disease-resistant cultivars themselves erode over time. We show how an integrated disease management strategy with frequent replacement of disease-resistant cultivars can give a large improvement in fungicide durability and yields.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Triticum/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Herança Multifatorial , Folhas de Planta , Resistência à Doença/genética
9.
PLoS Comput Biol ; 19(2): e1010884, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730434

RESUMO

Infectious diseases of plants present an ongoing and increasing threat to international biosecurity, with wide-ranging implications. An important challenge in plant disease management is achieving early detection of invading pathogens, which requires effective surveillance through the implementation of appropriate monitoring programmes. However, when monitoring relies on visual inspection as a means of detection, surveillance is often hindered by a long incubation period (delay from infection to symptom onset) during which plants may be infectious but not displaying visible symptoms. 'Sentinel' plants-alternative susceptible host species that display visible symptoms of infection more rapidly-could be introduced to at-risk populations and included in monitoring programmes to act as early warning beacons for infection. However, while sentinel hosts exhibit faster disease progression and so allow pathogens to be detected earlier, this often comes at a cost: faster disease progression typically promotes earlier onward transmission. Here, we construct a computational model of pathogen transmission to explore this trade-off and investigate how including sentinel plants in monitoring programmes could facilitate earlier detection of invasive plant pathogens. Using Xylella fastidiosa infection in Olea europaea (European olive) as a current high profile case study, for which Catharanthus roseus (Madagascan periwinkle) is a candidate sentinel host, we apply a Bayesian optimisation algorithm to determine the optimal number of sentinel hosts to introduce for a given sampling effort, as well as the optimal division of limited surveillance resources between crop and sentinel plants. Our results demonstrate that including sentinel plants in monitoring programmes can reduce the expected prevalence of infection upon outbreak detection substantially, increasing the feasibility of local outbreak containment.


Assuntos
Olea , Espécies Sentinelas , Teorema de Bayes , Doenças das Plantas , Plantas
10.
Phytopathology ; 113(9): 1630-1646, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36647183

RESUMO

Plant diseases caused by viruses share many common features with those caused by other pathogen taxa in terms of the host-pathogen interaction, but there are also distinctive features in epidemiology, most apparent where transmission is by vectors. Consequently, the host-virus-vector-environment interaction presents a continuing challenge in attempts to understand and predict the course of plant virus epidemics. Theoretical concepts, based on the underlying biology, can be expressed in mathematical models and tested through quantitative assessments of epidemics in the field; this remains a goal in understanding why plant virus epidemics occur and how they can be controlled. To this end, this review identifies recent emerging themes and approaches to fill in knowledge gaps in plant virus epidemiology. We review quantitative work on the impact of climatic fluctuations and change on plants, viruses, and vectors under different scenarios where impacts on the individual components of the plant-virus-vector interaction may vary disproportionately; there is a continuing, sometimes discordant, debate on host resistance and tolerance as plant defense mechanisms, including aspects of farmer behavior and attitudes toward disease management that may affect deployment in crops; disentangling host-virus-vector-environment interactions, as these contribute to temporal and spatial disease progress in field populations; computational techniques for estimating epidemiological parameters from field observations; and the use of optimal control analysis to assess disease control options. We end by proposing new challenges and questions in plant virus epidemiology.


Assuntos
Doenças das Plantas , Vírus de Plantas , Doenças das Plantas/prevenção & controle , Produtos Agrícolas , Interações Hospedeiro-Patógeno
11.
Phytopathology ; 113(1): 55-69, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35881866

RESUMO

There is a strong consensus that selection for fungicide resistant pathogen strains can be most effectively limited by using applications of mixtures of fungicides designed to balance disease control against selection. However, how to do this in practice is not entirely characterized. Previous work indicates optimal mixtures of pairs of fungicides which are both at a high risk of resistance can be constructed using pairs of doses that select equally for both single resistant strains in the first year of application. What has not been addressed thus far is the important real-world case in which the initial levels of resistance to each fungicide differ, for example because the chemicals have been available for different lengths of time. We show how recommendations based on equal selection in the first year can be suboptimal in this case. We introduce a simple alternative approach, based on equalizing the frequencies of single resistant strains in the year that achieving acceptable levels of control is predicted to become impossible. We show that this strategy is robust to changes in parameters controlling pathogen epidemiology and fungicide efficacy. We develop our recommendation using a preexisting, parameterized model of Zymoseptoria tritici (the pathogen causing Septoria leaf blotch on wheat), which exemplifies the range of plant pathogens that predominantly spread clonally, but for which sexual reproduction forms an important component of the life cycle. We show that pathogen sexual reproduction can influence the rate at which fungicide resistance develops but does not qualitatively affect our optimal resistance management recommendation. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Farmacorresistência Fúngica , Reprodução , Plantas
12.
Plant Pathol ; 72(5): 933-950, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516538

RESUMO

Previous models of growers' decision-making during epidemics have unrealistically limited disease management choices to just two options. Here, we expand previous game-theoretic models of grower decision-making to include three control options: a crop that is tolerant, resistant or susceptible to disease. Using tomato yellow leaf curl virus (TYLCV) as a case study, we investigate how growers can be incentivized to use different control options to achieve socially optimal outcomes. To do this, we consider the efforts of a 'social planner' who moderates the price of crops. We find that subsidizing a tolerant crop costs the social planner more in subsidies, as its use encourages selfishness and widespread adoption. Subsidizing a resistant crop, however, provides widespread benefits by reducing the prevalence of disease across the community of growers, including those that do not control, reducing the number of subsidies required from the social planner. We then use Gini coefficients to measure equitability of each subsidization scheme. This study highlights how grower behaviour can be altered using crop subsidies to promote socially optimal outcomes during epidemics.

13.
J R Soc Interface ; 19(195): 20220517, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36259173

RESUMO

Population-scale effects of resistant or tolerant crop varieties have received little consideration from epidemiologists. When growers deploy tolerant crop, population-scale disease pressures are often unaffected. This only benefits growers using tolerant varieties, selfishly decreasing yields for others. However, resistant crop can reduce disease pressure for all. We coupled an epidemiological model with game theory to understand how this affects uptake of control. Each time a grower plants a new crop, they must decide whether to use an improved (i.e. tolerant/resistant) or unimproved variety. This decision is based on strategic-adaptive expectations in our model, with growers comparing last season's profit with an estimate of what is expected from the alternative crop. Despite the positive feedback loop promoting use of a tolerant variety whenever it is available, a mixed unimproved- and tolerant-crop equilibrium can persist. Tolerant crop can also induce bistability between a scenario in which all growers use tolerant crop and the disease-free equilibrium, where no growers do. However, due to 'free-riding' by growers of unimproved crop, resistant crop nearly always exists in a mixed equilibrium. This work highlights how growers respond to contrasting incentives caused by tolerant and resistant varieties, and the distinct effects on yields and population-scale deployment.


Assuntos
Agricultura , Plantas
14.
Viruses ; 14(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36016326

RESUMO

Cucumber mosaic virus (CMV), a major tomato pathogen, is aphid-vectored in the non-persistent manner. We investigated if CMV-induced volatile organic compounds (VOCs) or other virus-induced cues alter aphid-tomato interactions. Y-tube olfactometry showed that VOCs emitted by plants infected with CMV (strain Fny) attracted generalist (Myzus persicae) and Solanaceae specialist (Macrosiphum euphorbiae) aphids. Myzus persicae preferred settling on infected plants (3 days post-inoculation: dpi) at 1h post-release, but at 9 and 21 dpi, aphids preferentially settled on mock-inoculated plants. Macrosiphum euphorbiae showed no strong preference for mock-inoculated versus infected plants at 3 dpi but settled preferentially on mock-inoculated plants at 9 and 21 dpi. In darkness aphids showed no settling or migration bias towards either mock-inoculated or infected plants. However, tomato VOC blends differed in light and darkness, suggesting aphids respond to a complex mix of olfactory, visual, and other cues influenced by infection. The LS-CMV strain induced no changes in aphid-plant interactions. Experiments using inter-strain recombinant and pseudorecombinant viruses showed that the Fny-CMV 2a and 2b proteins modified tomato interactions with Macrosiphum euphorbiae and Myzus persicae, respectively. The defence signal salicylic acid prevents excessive CMV-induced damage to tomato plants but is not involved in CMV-induced changes in aphid-plant interactions.


Assuntos
Afídeos , Cucumovirus , Infecções por Citomegalovirus , Solanum lycopersicum , Compostos Orgânicos Voláteis , Animais , Cucumovirus/metabolismo , Solanum lycopersicum/metabolismo , Doenças das Plantas , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
15.
PLoS Comput Biol ; 18(8): e1010309, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994449

RESUMO

While the spread of plant disease depends strongly on biological factors driving transmission, it also has a human dimension. Disease control depends on decisions made by individual growers, who are in turn influenced by a broad range of factors. Despite this, human behaviour has rarely been included in plant epidemic models. Considering Cassava Brown Streak Disease, we model how the perceived increase in profit due to disease management influences participation in clean seed systems (CSS). Our models are rooted in game theory, with growers making strategic decisions based on the expected profitability of different control strategies. We find that both the information used by growers to assess profitability and the perception of economic and epidemiological parameters influence long-term participation in the CSS. Over-estimation of infection risk leads to lower participation in the CSS, as growers perceive that paying for the CSS will be futile. Additionally, even though good disease management can be achieved through the implementation of CSS, and a scenario where all controllers use the CSS is achievable when growers base their decision on the average of their entire strategy, CBSD is rarely eliminated from the system. These results are robust to stochastic and spatial effects. Our work highlights the importance of including human behaviour in plant disease models, but also the significance of how that behaviour is included.


Assuntos
Manihot , Potyviridae , Humanos , Doenças das Plantas/prevenção & controle
16.
Curr Biol ; 32(17): 3838-3846.e5, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35841890

RESUMO

A key aim in biology is to identify which genetic changes contributed to the evolution of form through time. Apical dominance, the inhibitory effect exerted by shoot apices on the initiation or outgrowth of distant lateral buds, is a major regulatory mechanism of plant form.1 Nearly a century of studies in the sporophyte of flowering plants have established the phytohormone auxin as a front-runner in the search for key factors controlling apical dominance,2,3 identifying critical roles for long-range polar auxin transport and local auxin biosynthesis in modulating shoot branching.4-10 A capacity for lateral branching evolved by convergence in the gametophytic shoot of mosses and primed its diversification;11 however, polar auxin transport is relatively unimportant in this developmental process,12 the contribution of auxin biosynthesis genes has not been assessed, and more generally, the extent of conservation in apical dominance regulation within the land plants remains largely unknown. To fill this knowledge gap, we sought to identify genetic determinants of apical dominance in the moss Physcomitrium patens. Here, we show that leafy shoot apex decapitation releases apical dominance through massive and rapid transcriptional reprogramming of auxin-responsive genes and altering auxin biosynthesis gene activity. We pinpoint a subset of P. patens TRYPTOPHAN AMINO-TRANSFERASE (TAR) and YUCCA FLAVIN MONOOXYGENASE-LIKE (YUC) auxin biosynthesis genes expressed in the main and lateral shoot apices and show that they are essential for coordinating branch initiation and outgrowth. Our results demonstrate that local auxin biosynthesis acts as a pivotal regulator of apical dominance in moss and constitutes a shared mechanism underpinning shoot architecture control in land plants.


Assuntos
Briófitas , Bryopsida , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/genética
17.
J R Soc Interface ; 19(186): 20210718, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016554

RESUMO

Epidemics can particularly threaten certain sub-populations. For example, for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the elderly are often preferentially protected. For diseases of plants and animals, certain sub-populations can drive mitigation because they are intrinsically more valuable for ecological, economic, socio-cultural or political reasons. Here, we use optimal control theory to identify strategies to optimally protect a 'high-value' sub-population when there is a limited budget and epidemiological uncertainty. We use protection of the Redwood National Park in California in the face of the large ongoing state-wide epidemic of sudden oak death (caused by Phytophthora ramorum) as a case study. We concentrate on whether control should be focused entirely within the National Park itself, or whether treatment of the growing epidemic in the surrounding 'buffer region' can instead be more profitable. We find that, depending on rates of infection and the size of the ongoing epidemic, focusing control on the high-value region is often optimal. However, priority should sometimes switch from the buffer region to the high-value region only as the local outbreak grows. We characterize how the timing of any switch depends on epidemiological and logistic parameters, and test robustness to systematic misspecification of these factors due to imperfect prior knowledge.


Assuntos
COVID-19 , Epidemias , Quercus , Idoso , Animais , Humanos , Doenças das Plantas/prevenção & controle , Fatores de Risco , SARS-CoV-2
18.
PLoS Comput Biol ; 17(12): e1009759, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968387

RESUMO

Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector's own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding-as well as potential effects of infection on vector population density-on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics.


Assuntos
Insetos Vetores , Doenças das Plantas , Vírus de Plantas , Animais , Biologia Computacional , Aptidão Genética , Interações Hospedeiro-Patógeno , Insetos Vetores/genética , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Modelos Biológicos , Doenças das Plantas/estatística & dados numéricos , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade
19.
PLoS Comput Biol ; 17(12): e1009727, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962929

RESUMO

Aphids are the primary vector of plant viruses. Transient aphids, which probe several plants per day, are considered to be the principal vectors of non-persistently transmitted (NPT) viruses. However, resident aphids, which can complete their life cycle on a single host and are affected by agronomic practices, can transmit NPT viruses as well. Moreover, they can interfere both directly and indirectly with transient aphids, eventually shaping plant disease dynamics. By means of an epidemiological model, originally accounting for ecological principles and agronomic practices, we explore the consequences of fertilization and irrigation, pesticide deployment and roguing of infected plants on the spread of viral diseases in crops. Our results indicate that the spread of NPT viruses can be i) both reduced or increased by fertilization and irrigation, depending on whether the interference is direct or indirect; ii) counter-intuitively increased by pesticide application and iii) reduced by roguing infected plants. We show that a better understanding of vectors' interactions would enhance our understanding of disease transmission, supporting the development of disease management strategies.


Assuntos
Afídeos/virologia , Produtos Agrícolas/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Vírus de Plantas , Animais , Controle de Insetos , Vírus de Plantas/genética , Vírus de Plantas/fisiologia
20.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021073

RESUMO

Plant disease outbreaks are increasing and threaten food security for the vulnerable in many areas of the world. Now a global human pandemic is threatening the health of millions on our planet. A stable, nutritious food supply will be needed to lift people out of poverty and improve health outcomes. Plant diseases, both endemic and recently emerging, are spreading and exacerbated by climate change, transmission with global food trade networks, pathogen spillover, and evolution of new pathogen lineages. In order to tackle these grand challenges, a new set of tools that include disease surveillance and improved detection technologies including pathogen sensors and predictive modeling and data analytics are needed to prevent future outbreaks. Herein, we describe an integrated research agenda that could help mitigate future plant disease pandemics.


Assuntos
Mudança Climática , Ecossistema , Segurança Alimentar , Doenças das Plantas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...