Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 337: 139270, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37343638

RESUMO

Soil contamination caused by pesticides poses a significant environmental challenge, and addressing it requires effective solutions. Bioremediation, combining the utilization of slurry-bioreactors and microbial consortia, emerges as an appropiated strategy to tackle this issue. Therefore, this research evaluated the chlordane (CLD) removal efficiency by a Streptomyces consortium through bioaugmentation of polluted soils, and slurry-bioreactors. For that, a Streptomyces defined consortium with CLD removal abilities was inoculated in soil microcosms and soil-slurry bioreactors (SB), with (SB-TSB) and without stimulation (SB-water). In soil, CLD presence has no negative effect on consortium growth. This was supported by comparing its duplication time (7.48 ± 0.14 h) with the obtained in the biotic control (7.45 ± 0.04 h). Furthermore, 17% of pesticide removal by microbial action was detected in the treated microcosms. In SB, the microbial development was not affected by the pesticide presence. In SB-TSB, the microbial growth was higher than in SB-water. This was supported by its lesser duplication time (7.27 ± 0.17 h) with respect to the non-stimulated systems (10.88 ± 0.29 h). However, SB-water showed the highest CLD removal ability (34.8%), with a concomitant increase in the chloride ion release. In the phytotoxicity test, the vigor index showed that the bioremediation in SB-water did not exert adverse effects greater than those generated by the CLD. Indeed, the root length increased after the treatment. These findings demonstrate the versatility of the Streptomyces consortium to remediate solid and semi-solid matrices impacted with pesticides, and the advantage of using bioaugmented SB to enhance the pollutants removal and accelerating the clean-up time required.


Assuntos
Actinobacteria , Praguicidas , Poluentes do Solo , Streptomyces , Clordano , Poluentes do Solo/análise , Biodegradação Ambiental , Reatores Biológicos , Solo , Microbiologia do Solo
2.
Microbiol Res ; 253: 126877, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34644673

RESUMO

The extracellular polymeric substances (EPS) have shown free radical scavenging and antitumor activity against both breast and colon cell lines. In this regard, actinobacteria have become an increasingly popular sources of EPS. Therefore, in this study four Streptomyces strains isolated from contaminated soil (M7, A5, A14 and MC1) were evaluated for determining its biofilm-forming capacity including under pesticide stress. In addition, chemical composition of EPS and its cytotoxic effects over 4T1 breast cancer cell and Caco-2 human tumor colon cells were evaluated. The results demonstrated that Streptomyces sp. A5 had the highest capability to develop biofilm more than other strains tested, even under pesticide stress. Moreover, this strain produced EPS with a total protein/total polysaccharide rate of 1.59 ± 0.05. On the other hand, cytotoxicity assays of EPS showed that Streptomyces sp. A5 display a higher toxic effect against 4T1 Breast cancer cells (96.2 ± 13.5 %), Caco-2 (73.9 ± 6.4 %) and low toxicity (29.9 % ± 9.1 %) against non-transformed intestinal cells (IEC-18). Data do not show cytotoxic effect relationship with biofilm-forming capabilities of strains, nor the chemical composition of EPS matrix. The gene that codes for polysaccharide deacetylase, parB-like and transRDD proteins, were identified. These results contribute to the knowledge about the variability of chemical composition and potential cytotoxic properties of EPS produced by Streptomyces biofilms. It proposes interesting future challenges for linking Streptomyces-based pesticide remediation technology with the development of new antitumor drugs.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Streptomyces , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/parasitologia , Humanos , Streptomyces/química
3.
PLoS One ; 15(4): e0230857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240216

RESUMO

The nucleotide sequences of plasmids pRC12 (12,342 bp; GC 43.99%) and pRC18 (18,664 bp; GC 34.33%), harbored by the bacteriocin-producer Lactobacillus curvatus CRL 705, were determined and analyzed. Plasmids pRC12 and pRC18 share a region with high DNA identity (> 83% identity between RepA, a Type II toxin-antitoxin system and a tyrosine integrase genes) and are stably maintained in their natural host L. curvatus CRL 705. Both plasmids are low copy number and belong to the theta-type replicating group. While pRC12 is a pUCL287-like plasmid that possesses iterons and the repA and repB genes for replication, pRC18 harbors a 168 amino acid replication protein affiliated to RepB, which was named RepB'. Plasmid pRC18 also possesses a pUCL287-like repA gene but it was disrupted by an 11 kb insertion element that contains RepB', several transposases/IS elements, and the lactocin Lac705 operon. An Escherichia coli / Lactobacillus shuttle vector, named plasmid p3B1, carrying the pRC18 replicon (i.e. repB' and replication origin), a chloramphenicol resistance gene and a pBluescript backbone, was constructed and used to define the host range of RepB'. Chloramphenicol-resistant transformants were obtained after electroporation of Lactobacillus plantarum CRL 691, Lactobacillus sakei 23K and a plasmid-cured derivative of L. curvatus CRL 705, but not of L. curvatus DSM 20019 or Lactococcus lactis NZ9000. Depending on the host, transformation efficiency ranged from 102 to 107 per µg of DNA; in the new hosts, the plasmid was relatively stable as 29-53% of recombinants kept it after cell growth for 100 generations in the absence of selective pressure. Plasmid p3B1 could therefore be used for cloning and functional studies in several Lactobacillus species.


Assuntos
Lactobacillus/genética , Plasmídeos/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Sequência de Bases/genética , Replicação do DNA/genética , DNA Bacteriano/genética , Vetores Genéticos/genética , Origem de Replicação/genética , Replicon/genética , Análise de Sequência de DNA/métodos , Transposases/genética
4.
Ecotoxicol Environ Saf ; 169: 662-668, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30496999

RESUMO

Due to their antimicrobial properties, copper nanoparticles (CuNPs) have been proposed to be used in agriculture for pest control. Pesticides removal is mainly done by microorganisms, whose genes usually are found in conjugative catabolic plasmids (CCP). The aim of this work was to evaluate if CuNPs at subinhibitory concentrations modify the conjugation frequency (CF) of two CCP (pJP4 and pADP1). CuNPs were characterized by scanning electron microscopy with an X-ray detector, dynamic light scattering and X-ray diffraction. Mating assays were done in LB broth supplemented with CuNPs (10, 20, 50 and 100 µg mL-1) or equivalent concentrations of CuSO4. Interestingly, we observed that in LB, Cu+2 release from CuNPs is fast as evaluated by atomic absorption spectrophotometry. Donor and recipient strains were able to grow in all copper concentrations assayed, but CF of mating pairs was reduced to 10% in the presence of copper at 20 or 50 µg Cu mL-1 compared to control. Thus, our results indicated that both copper forms, CuNPs or CuSO4, negatively affected the transfer of catabolic plasmids by conjugation. Since dissemination of degradative genes by conjugation contribute to degradation of pesticides by microorganisms, this work improves our understanding of the risks of using copper in agriculture soils, which could affect the biodegradative potential of microbial communities.


Assuntos
Anti-Infecciosos/toxicidade , Conjugação Genética/efeitos dos fármacos , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Microbiota/efeitos dos fármacos , Plasmídeos/efeitos dos fármacos , Microbiologia do Solo , Biodegradação Ambiental , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microbiota/genética , Microscopia Eletrônica de Varredura , Microbiologia do Solo/normas , Difração de Raios X
5.
Chemosphere ; 211: 1025-1034, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30223317

RESUMO

Highly contaminated γ-hexachlorocyclohexane (lindane) areas were reported worldwide. Low aqueous solubility and high hydrophobicity make lindane particularly resistant to microbial degradation. Physiological and genetic Streptomyces features make this genus more appropriate for bioremediation compared with others. Complete degradation of lindane was only proposed in the genus Sphingobium although the metabolic context of the degradation was not considered. Streptomyces sp.M7 has demonstrated ability to remove lindane from culture media and soils. In this study, we used MS-based label-free quantitative proteomic, RT-qPCR and exhaustive bioinformatic analysis to understand lindane degradation and its metabolic context in Streptomyces sp. M7. We identified the proteins involved in the up-stream degradation pathway. In addition, results demonstrated that mineralization of lindane is feasible since proteins from an unusual down-stream degradation pathway were also identified. Degradative steps were supported by an active catabolism that supplied energy and reducing equivalents in the form of NADPH. To our knowledge, this is the first study in which degradation steps of an organochlorine compound and metabolic context are elucidate in a biotechnological genus as Streptomyces. These results serve as basement to study other degradative actinobacteria and to improve the degradation processes of Streptomyces sp. M7.


Assuntos
Hexaclorocicloexano/metabolismo , Redes e Vias Metabólicas , Proteoma/metabolismo , Proteômica/métodos , Streptomyces/genética , Streptomyces/metabolismo , Transcriptoma , Biodegradação Ambiental , Proteoma/análise
6.
Chemosphere ; 166: 41-62, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27684437

RESUMO

Actinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants. This ability is the reason why actinobacteria have received special attention as candidates for bioremediation, which has gained importance because of the widespread release of contaminants into the environment. Among organic contaminants, pesticides are widely used for pest control, although the negative impact of these chemicals in the environmental balance is increasingly becoming apparent. Similarly, the extensive application of heavy metals in industrial processes lead to highly contaminated areas worldwide. Several studies focused in the use of actinobacteria for cleaning up the environment were performed in the last 15 years. Strategies such as bioaugmentation, biostimulation, cell immobilization, production of biosurfactants, design of defined mixed cultures and the use of plant-microbe systems were developed to enhance the capabilities of actinobacteria in bioremediation. In this review, we compiled and discussed works focused in the study of different bioremediation strategies using actinobacteria and how they contributed to the improvement of the already existing strategies. In addition, we discuss the importance of omic studies to elucidate mechanisms and regulations that bacteria use to cope with pollutant toxicity, since they are still little known in actinobacteria. A brief account of sources and harmful effects of pesticides and heavy metals is also given.


Assuntos
Actinobacteria/metabolismo , Biodegradação Ambiental , Metais Pesados/metabolismo , Praguicidas/metabolismo , Poluentes Ambientais/metabolismo , Compostos Orgânicos/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Streptomyces/metabolismo , Propriedades de Superfície , Tensoativos/metabolismo
7.
Int J Mol Sci ; 13(11): 15086-106, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23203113

RESUMO

In the last few decades, highly toxic organic compounds like the organochlorine pesticide (OP) hexachlorocyclohexane (HCH) have been released into the environment. All HCH isomers are acutely toxic to mammals. Although nowadays its use is restricted or completely banned in most countries, it continues posing serious environmental and health concerns. Since HCH toxicity is well known, it is imperative to develop methods to remove it from the environment. Bioremediation technologies, which use microorganisms and/or plants to degrade toxic contaminants, have become the focus of interest. Microorganisms play a significant role in the transformation and degradation of xenobiotic compounds. Many Gram-negative bacteria have been reported to have metabolic abilities to attack HCH. For instance, several Sphingomonas strains have been reported to degrade the pesticide. On the other hand, among Gram-positive microorganisms, actinobacteria have a great potential for biodegradation of organic and inorganic toxic compounds. This review compiles and updates the information available on bacterial removal of HCH, particularly by Streptomyces strains, a prolific genus of actinobacteria. A brief account on the persistence and deleterious effects of these pollutant chemical is also given.


Assuntos
Bactérias/metabolismo , Hexaclorocicloexano/metabolismo , Actinobacteria/metabolismo , Biodegradação Ambiental , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Bactérias Gram-Negativas/metabolismo , Hexaclorocicloexano/química , Redes e Vias Metabólicas , Plantas/metabolismo , Plantas/microbiologia
8.
Curr Microbiol ; 46(3): 180-3, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12567240

RESUMO

Lactobacillus casei CRL705 produces a class IIb bacteriocin, lactocin 705, which relies on the complementary action of two components, Lac705alpha and Lac705beta. These peptides exert a bactericidal effect on the indicator strain Lactobacillus plantarum CRL691, with an optimal Lac705alpha/Lac705beta peptide ratio of 1 to 4. Electron microscopy studies showed that treated CRL691 cells have their cell wall severely damaged, with mesosome-like membranous formations protruding into their cytoplasm. Although less pronounced, a similar effect was also observed with the Lac705beta peptide alone. Furthermore, Lac705beta increased the inhibitory action of a diluted supernatant of L. casei CRL705, while Lac705alpha protected CRL691 cells from inhibition. Both peptides were required to dissipate the proton motive force (Deltapsi and DeltapH) of CRL691 cells. These data suggested that of the two components of lactocin 705, the Lac705alpha peptide is responsible for receptor recognition, and the Lac705beta peptide is the active component on the cell membrane of CRL691 cells.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Peptídeos , Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Membrana Celular/efeitos dos fármacos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...