Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 12(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875886

RESUMO

A biodegradable poly(3-R-hydroxyalkanoate) synthesized by Pseudomonas mediterranea was investigated as a biomaterial to obtain colloidal drug delivery systems. Using a nanoprecipitation method, nanoparticles with a mean size of 155 nm and a negative surface charge were formed. They can be freeze-dried by adding hydroxypropyl-ß-cyclodextrin as a cryoprotectant, and they have been shown to efficiently load both a hydrophilic (calcein) and a lipophilic (Nile red) model probe. Since this polymer contains terminal double bonds in the side chains, cross-linking conditions were tested. In particular, under the action of UV rays or irradiation with an incandescent yellow lamp, this polymer tended to cross-link.

2.
Pharmacol Res ; 111: 713-720, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27475885

RESUMO

We evaluated whether specifically and directly targeting human antigen R (HuR), a member of embryonic lethal abnormal vision (ELAV) proteins family, may represent a new potential therapeutic strategy to manage diabetic retinopathy. Nanosystems loaded with siRNA silencing HuR expression (lipoplexes), consisting of solid lipid nanoparticles (SLN) and liposomes (SUV) were prepared. Photon correlation spectroscopy analysis, Zeta potential measurement and atomic force microscopy (AFM) studies were carried out to characterize the complexation of siRNA with the lipid nanocarriers. Nanosystems were evaluated by using AFM and scanning electron microscopy. The lipoplexes were injected into the eye of streptozotocin (STZ)-induced diabetic rats. Retinal HuR and VEGF levels were detected by Western blot and ELISA, respectively. Retinal histology was also carried out. The results demonstrated that retinal HuR and VEGF are significantly increased in STZ-rats and are blunted by HuR siRNA treatment. Lipoplexes with a weak positive surface charge and with a 4:1 N/P (cationic lipid nitrogen to siRNA phosphate) ratio exert a better transfection efficiency, significantly dumping retinal HuR and VEGF levels. In conclusion, we demonstrated that siRNA can be efficiently delivered into the rat retina using lipid-based nanocarriers, and some of the lipoplexes loaded with siRNA silencing HuR expression are potential candidates to manage retinal diseases.


Assuntos
Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/prevenção & controle , Proteína Semelhante a ELAV 1/genética , Nanomedicina/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Terapêutica com RNAi/métodos , Retina/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Injeções Intraoculares , Lipídeos/química , Lipossomos , Masculino , Nanopartículas , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Retina/patologia , Propriedades de Superfície , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Int J Antimicrob Agents ; 45(6): 622-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25816979

RESUMO

Many antibacterial drugs have some difficulty passing through the bacterial cell membrane, especially if they have a high molecular weight or large spatial structure. Consequently, intrinsic resistance is shown by some bacterial strains. Reduced cell membrane permeability is one of the mechanisms of resistance known for fusidic acid (FUS), a bacteriostatic steroidal compound with activity limited to Gram-positive bacteria. Moreover, the lipophilic character of FUS has been shown to cause drug retention inside the bilayers of cell membranes, preventing its diffusion towards target sites inside the cytoplasm. Targeting antimicrobial agents by means of liposomes may be a valid strategy in the treatment of infections refractory to conventional routes of antimicrobial treatment. On this basis, loading of FUS in fusogenic liposomes (FLs) was planned in this study. Fusogenic small unilamellar vesicles loaded with FUS were produced to evaluate their influence on improving the cell penetration and antibacterial activity of the antibiotic. The produced carriers were technologically characterised and were subjected to an in vitro microbiological assay against several strains of Gram-negative and Gram-positive bacteria. The experimental results showed that encapsulating FUS in a liposomal carrier can improve antimicrobial efficacy and reduce the effective concentration required, probably through putative mechanisms of increased diffusion through the bacterial cell membrane. In fact, whilst free FUS was active only on the tested Gram-positive strains, incubation of FUS-loaded FLs exhibited growth inhibitory activity both against Gram-positive and Gram-negative strains. The lowest MICs were obtained against Staphylococcus epidermidis (≤0.15 µg/mL) and Acinetobacter baumannii (37.5 µg/mL) clinical strains.


Assuntos
Antibacterianos/metabolismo , Sistemas de Liberação de Medicamentos , Ácido Fusídico/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipossomos/metabolismo , Nanotecnologia/métodos
4.
J Liposome Res ; 25(4): 287-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25586718

RESUMO

Many peptides and proteins, although potentially useful for the treatment of various diseases, are hindered in their clinical use by poor oral absorption and rapid enzymatic degradation. One of the available solutions to these problems is to increase the lipophilicity by conjugating the peptides to lipophilic moieties, making them more able to cross the biomembranes by passive transport. Occludin is a 65-kDa integral plasma-membrane protein located at the tight junctions. This protein and the peptide derived from it have potential clinical application for drug delivery. Peptide OP90-103 (1) is a fragment of occludin that shows a very poor oral bioavailability and is highly susceptible to enzymatic degradation. The conjugation of 1 with two lipoamino acid (LAA) moieties has been shown to enhance its lipophilicity and bioavailability, as well as its enzymatic stability. The purpose of this study was to evaluate the possibility of encapsulating fluorescein modified lipidated OP90-103 (2), in unilamellar- (LUV) and multilamellar liposomes (MLV), which have a different composition and surface charge and are produced by different methods. The cell internalization of the carrier systems was evaluated in vitro.


Assuntos
Portadores de Fármacos/química , Ocludina/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Estrutura Molecular , Ocludina/síntese química , Peptídeos/síntese química , Peptídeos/química , Células Tumorais Cultivadas
5.
Mater Sci Eng C Mater Biol Appl ; 46: 470-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25492012

RESUMO

Within a research directed to developing new polymeric materials, suitable for decorating the surface of colloidal drug carriers, PEG5000 polymers containing a free carboxyl or amine group at one end were conjugated to an α-lipoamino moiety (LAA). The conjugates were characterized by FT-IR, (1)H-NMR, and MALDI-TOF mass spectrometry. They showed the same profile of solubility as the parent PEGs in water and in some polar and apolar solvents of pharmaceutical use. Representative terms showed to be well tolerated when incubated with Caco-2 or L929 cell cultures. Dedicated differential scanning calorimetry (DSC) studies were performed to prove the interaction of increasing molar fractions of the PEG5000-LAA conjugates with dipalmitoylphosphatidylcholine (DPPC) bilayers, to gain information about their possible incorporation in drug nanocarriers. While the parent PEGs affected only the superficial structure of bilayers, the amphiphilic PEG-LAA conjugates induced a perturbing effect on the thermotropic behavior of DPPC liposomes, according to the structure of the linked LAA residue. A molar concentration of these PEG-LAA between 5 and 10% was individuated as the most suitable to produce stable vesicles.


Assuntos
Aminoácidos/química , Coloides , Portadores de Fármacos , Polietilenoglicóis/química , Materiais Biocompatíveis , Células CACO-2 , Varredura Diferencial de Calorimetria , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho , Análise Espectral , Propriedades de Superfície
6.
Pharm Pat Anal ; 3(2): 199-215, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24588596

RESUMO

Increasing attention is being given to lipid nanocarriers (LNs) as drug delivery systems, due to the advantages offered of a higher biocompatibility and lower toxicity compared with polymeric nanoparticles. Many administration routes are being investigated for LNs, including topical, oral and parenteral ones. LNs are also proposed for specific applications such as cancer treatment, gene therapy, diagnosis and medical devices production. However, the high number of published research articles does not match an equal amount of patents. A recent Review of ours, published in Pharmaceutical Patent Analyst, reported the patents proposing novel methods for the production of LNs. This review work discusses recent patents, filed in 2007-2013 and dealing with the industrial applications of lipid-based nanocarriers for the vectorization of therapeutically relevant molecules, as well as biotech products such as proteins, gene material and vaccines, in the pharmaceutical, diagnostic and biomedical areas.


Assuntos
Portadores de Fármacos , Lipídeos/química , Nanopartículas/química , Patentes como Assunto , Animais , Humanos , Nanotecnologia
7.
Pharm Pat Anal ; 2(5): 665-77, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24237173

RESUMO

Among the colloidal vectors proposed for the controlled delivery and targeting of drugs and other biologically active compounds, lipid-based nanocarriers are acquiring an increasing role due to a number of peculiar technological and physical features. Solid lipid nanoparticles, lipid nanocapsules, nanostructured lipid carriers, and drug-lipid conjugates are all examples of how it can be possible to combine the properties of the more acknowledged liposomal systems, such as biocompatibility and biodegradability, with the stability and compositional flexibility, distinctive of polymeric nanosystems. This article introduces recent patents, filed in years 2007-2013, that deal with novel or amended methods of production of the various types of lipid-based nanocarriers. Although a significant gap still remains between basic research and patenting activity in this field, many of the proposed methods can attain an industrial value. Furthermore, the critical analysis of these patents further supports the position that a general revision of patenting systems at an international level would be necessary for nanosized pharmaceutical systems.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Composição de Medicamentos , Indústria Farmacêutica , Humanos , Lipídeos/química , Lipossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...