Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063149

RESUMO

Research on the energy metabolism of cancer cells is becoming a central element in oncology, and in recent decades, it has allowed us to better understand the mechanisms underlying the onset and chemoresistance of oncological pathologies. Mitochondrial bioenergetic processes, in particular, have proven to be fundamental for the survival of tumor stem cells (CSC), a subpopulation of tumor cells responsible for tumor recurrence, the onset of metastasis, and the failure of conventional anticancer therapies. Over the years, numerous natural products, in particular flavonoids, widely distributed in the plant kingdom, have been shown to interfere with tumor bioenergetics, demonstrating promising antitumor effects. Herein, the anticancer potential of Licoflavanone, a flavanone isolated from the leaves of G. glabra, was explored for the first time in breast cancer cells. The results obtained highlighted a marked antitumor activity that proved to be greater than that mediated by Glabranin or Pinocembrin, flavanones isolated from the same plant matrix. Furthermore, the investigation of Licoflavanone's effects on breast cancer energy metabolism highlighted the inhibitory activity of this natural product on tumor bioenergetics, a mechanism that could underlie its ability to reduce tumor proliferation, invasiveness, and stemness.


Assuntos
Neoplasias da Mama , Metabolismo Energético , Flavanonas , Glycyrrhiza , Humanos , Flavanonas/farmacologia , Flavanonas/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Glycyrrhiza/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células MCF-7
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834472

RESUMO

Dyslipidemia is a lipid metabolism disorder associated with the loss of the physiological homeostasis that ensures safe levels of lipids in the organism. This metabolic disorder can trigger pathological conditions such as atherosclerosis and cardiovascular diseases. In this regard, statins currently represent the main pharmacological therapy, but their contraindications and side effects limit their use. This is stimulating the search for new therapeutic strategies. In this work, we investigated in HepG2 cells the hypolipidemic potential of a picrocrocin-enriched fraction, analyzed by high-resolution 1H NMR and obtained from a saffron extract, the stigmas of Crocus sativus L., a precious spice that has already displayed interesting biological properties. Spectrophotometric assays, as well as expression level of the main enzymes involved in lipid metabolism, have highlighted the interesting hypolipidemic effects of this natural compound; they seem to be exerted through a non-statin-like mechanism. Overall, this work provides new insights into the metabolic effects of picrocrocin, thus confirming the biological potential of saffron and paving the way for in vivo studies that could validate this spice or its phytocomplexes as useful adjuvants in balancing blood lipid homeostasis.


Assuntos
Crocus , Humanos , Crocus/química , Células Hep G2 , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Cicloexenos/farmacologia
3.
Cancers (Basel) ; 15(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36672360

RESUMO

Pancreatic cancer is among the deadliest cancers worldwide and commonly presents as pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming is a hallmark of PDAC. Glucose and glutamine metabolism are extensively rewired in order to fulfil both energetic and synthetic demands of this aggressive tumour and maintain favorable redox homeostasis. The mitochondrial pyruvate carrier (MPC), the glutamine carrier (SLC1A5_Var), the glutamate carrier (GC), the aspartate/glutamate carrier (AGC), and the uncoupling protein 2 (UCP2) have all been shown to influence PDAC cell growth and progression. The expression of MPC is downregulated in PDAC and its overexpression reduces cell growth rate, whereas the other four transporters are usually overexpressed and the loss of one or more of them renders PDAC cells unable to grow and proliferate by altering the levels of crucial metabolites such as aspartate. The aim of this review is to comprehensively evaluate the current experimental evidence about the function of these carriers in PDAC metabolic rewiring. Dissecting the precise role of these transporters in the context of the tumour microenvironment is necessary for targeted drug development.

4.
Biomolecules ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38254647

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. The early diagnosis of ALS can be challenging, as it usually depends on clinical examination and the exclusion of other possible causes. In this regard, the analysis of miRNA expression profiles in biofluids makes miRNAs promising non-invasive clinical biomarkers. Due to the increasing amount of scientific literature that often provides controversial results, this work aims to deepen the understanding of the current state of the art on this topic using a machine-learning-based approach. A systematic literature search was conducted to analyze a set of 308 scientific articles using the MySLR digital platform and the Latent Dirichlet Allocation (LDA) algorithm. Two relevant topics were identified, and the articles clustered in each of them were analyzed and discussed in terms of biomolecular mechanisms, as well as in translational and clinical settings. Several miRNAs detected in the tissues and biofluids of ALS patients, including blood and cerebrospinal fluid (CSF), have been linked to ALS diagnosis and progression. Some of them may represent promising non-invasive clinical biomarkers. In this context, future scientific priorities and goals have been proposed.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Biomarcadores , Aprendizado de Máquina , MicroRNAs/genética
5.
Cancers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358836

RESUMO

Background: Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men. Although the prostate-specific antigen (PSA) test is used in clinical practice for screening and/or early detection of PCa, it is not specific, thus resulting in high false-positive rates. MicroRNAs (miRs) provide an opportunity as biomarkers for diagnosis, prognosis, and recurrence of PCa. Because the size of the literature on it is increasing and often controversial, this study aims to consolidate the state-of-art of relevant published research. Methods: A Systematic Literature Review (SLR) approach was applied to analyze a set of 213 scientific publications through a text mining method that makes use of the Latent Dirichlet Allocation (LDA) algorithm. Results and Conclusions: The result of this activity, performed through the MySLR digital platform, allowed us to identify a set of three relevant topics characterizing the investigated research area. We analyzed and discussed all the papers clustered into them. We highlighted that several miRs are associated with PCa progression, and that their detection in patients' urine seems to be the more reliable and promising non-invasive tool for PCa diagnosis. Finally, we proposed some future research directions to help future scientists advance the field further.

6.
Biomedicines ; 10(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36009386

RESUMO

The rapid emergence and worldwide detection of the SARS-CoV-2 Omicron variant underscore the importance of robust genomic surveillance systems and prompt information sharing among global public health partners. The Omicron variant has rapidly replaced the Delta variant as a dominating SARS-CoV-2 variant because of natural selection, favoring the variant with higher infectivity and stronger vaccine breakthrough capability. The Omicron variant is also known as B.1.1.529. It has four sub-variants, indicated as BA.1, BA.2, BA.3 and BA.4. Among them, BA.1 is the currently prevailing sub-variant, and BA.2 has been found to be able to alarmingly re-infect patients initially infected by Omicron BA.1. The BA.3 sub-variant is a combination of mutations of BA.1 and BA.2, especially in the spike protein. Today, the BA.4 variant is emerging, which is herein described, and it was the first detected in Italy. Via bioinformatic analysis, we are reporting that the BA.4 that was identified harbors a new mutation, specifically a deletion in the ORF1ab gene, corresponding to KSF141_del in non-structural protein 1 (nsp1), a critical virulence factor able to suppress host translation. The bioinformatics comparison analysis with the other three sub-variants reveals that the deletion was not present before and was never reported until now. Therefore, we can speculate that Omicron BA.4 will become a new dominating "variant of concern" and may also break vaccine protection. Moreover, we show that other proteins are mutated in the BA.4. In particular, seven mutations are recognized in the nucleocapsid (N) protein, and the capability of five different types of rapid antigenic tests are used to identify it.

7.
Microorganisms ; 10(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456845

RESUMO

The characterization of Oenococcus oeni strains isolated from Nero di Troia wine (Apulia, Italy) sampled in two distinct production areas was carried out. The two indigenous populations, consisting of 95 and 97 isolates, displayed high genetic diversity when analyzed by amplified fragments length polymorphisms (AFLP). Based on the UPGMA dendrogram obtained by AFLP analysis, the two populations displayed similar genotypes that grouped in the same clusters with a high level of similarity (>95%). One genotype was found in only one of the two areas. Representative strains of each cluster were analyzed for their enzymatic activities (esterase, ß-glucosidase, and protease), assayed in whole cells, and tested for their metabolic properties (consumption of L-malic acid, citric acid, acetaldehyde, and arginine) and growth parameters. Significant differences among strains, including the reference strain ATCC BAA-1163, were observed for all of these properties. Principal component analysis evidenced phenotypic differences among strains, and well separated some of them belonging to different genotypes. Strains exhibiting the best performances in most of these traits could be further investigated in order to select possible candidates as malolactic starters for Nero di Troia wine. This study provided insights on the population structure of O. oeni of a local winemaking area useful to the understanding of the regional diversity of this bacterium, an issue not yet completely resolved

8.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162943

RESUMO

Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson's disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system.


Assuntos
Ácido Aspártico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Desacoplamento Mitocondrial/genética , Proteínas de Desacoplamento Mitocondrial/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/biossíntese , Transporte Biológico Ativo , Clonagem Molecular , Citosol/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , beta-Alanina/biossíntese
9.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827632

RESUMO

Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and ß-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.


Assuntos
Proteínas Mitocondriais/metabolismo , Doenças Neuromusculares/metabolismo , Animais , Transporte de Elétrons/genética , Humanos , Modelos Biológicos , Mutação/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/enzimologia , Fenótipo
10.
Foods ; 10(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34574171

RESUMO

Resistant starch (RS) is the starch fraction that eludes digestion in the small intestine. RS is classified into five subtypes (RS1-RS5), some of which occur naturally in plant-derived foods, whereas the others may be produced by several processing conditions. The different RS subtypes are widely found in processed foods, but their physiological effects depend on their structural characteristics. In the present study, foods, nutrition and biochemistry are summarized in order to assess the type and content of RS in foods belonging to the Mediterranean Diet (MeD). Then, the benefits of RS consumption on health are discussed, focusing on their capability to enhance glycemic control. RS enters the large bowel intestine, where it is fermented by the microbiome leading to the synthesis of short-chain fatty acids as major end products, which in turn have systemic health effects besides the in situ one. It is hoped that this review will help to understand the pros of RS consumption as an ingredient of MeD food. Consequently, new future research directions could be explored for developing advanced dietary strategies to prevent non-communicable diseases, including colon cancer.

11.
3 Biotech ; 11(9): 415, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34485008

RESUMO

Phytic acid is abundant in seeds, roots and stems of plants, it acts as an anti-nutrient in food and feed industry, since it affects the absorption of nutrients by humans and monogastric animals. Furthermore, phosphorus produced through its decomposition by microorganisms can cause environmental pollution. Phytase degrades phytic acid generating precursors of inositol that can be used in clinical practice; in addition, phytase treatment can minimize the anti-nutritional effect of phytic acid. The use of phytase synthesized from Bacillus is more advantageous due to its high activity. Additionally, its good heat resistance under neutral conditions greatly fills the gap of commercial utilization of acid phytase. In this review, we summarize the latest research results on Bacillus phytase, including its physiological and biochemical characteristics, molecular structure information, calcium effects on its catalytic activity and stability, its catalytic mechanism and molecular modification.

12.
Biochim Biophys Acta Gen Subj ; 1865(5): 129854, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497735

RESUMO

BACKGROUND: In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS: The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS: The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS: The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE: The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/química , Antiporters/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Evolução Molecular , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842667

RESUMO

Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Translocador 1 do Nucleotídeo Adenina/química , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo
14.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825551

RESUMO

Metabolic reprogramming is a hallmark of cancer, which implements a profound metabolic rewiring in order to support a high proliferation rate and to ensure cell survival in its complex microenvironment. Although initial studies considered glycolysis as a crucial metabolic pathway in tumor metabolism reprogramming (i.e., the Warburg effect), recently, the critical role of mitochondria in oncogenesis, tumor progression, and neoplastic dissemination has emerged. In this report, we examined the main mitochondrial metabolic pathways that are altered in cancer, which play key roles in the different stages of tumor progression. Furthermore, we reviewed the function of important molecules inhibiting the main mitochondrial metabolic processes, which have been proven to be promising anticancer candidates in recent years. In particular, inhibitors of oxidative phosphorylation (OXPHOS), heme flux, the tricarboxylic acid cycle (TCA), glutaminolysis, mitochondrial dynamics, and biogenesis are discussed. The examined mitochondrial metabolic network inhibitors have produced interesting results in both preclinical and clinical studies, advancing cancer research and emphasizing that mitochondrial targeting may represent an effective anticancer strategy.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Heme/metabolismo , Humanos , Redes e Vias Metabólicas , Mitocôndrias/genética , Neoplasias/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos
15.
Biomedicines ; 8(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085547

RESUMO

Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use.

16.
Mol Biotechnol ; 62(2): 119-131, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31758489

RESUMO

3-hydroxy-3-methyl glutaryl-CoA reductase, also known as HMGR, plays a crucial role in regulating cholesterol biosynthesis and represents the main pharmacological target of statins. In mammals, this enzyme localizes to the endoplasmic reticulum membrane. HMGR includes different regions, an integral N-terminal domain connected by a linker-region to a cytosolic C-terminal domain, the latter being responsible for enzymatic activity. The aim of this work was to design a simple strategy for cloning, expression, and purification of the catalytic C-terminal domain of the human HMGR (cf-HMGR), in order to spectrophotometrically test its enzymatic activity. The recombinant cf-HMGR protein was heterologously expressed in Escherichia coli, purified by Ni+-agarose affinity chromatography and reconstituted in its active form. MALDI mass spectrometry was adopted to monitor purification procedure as a technique orthogonal to the classical Western blot analysis. Protein identity was validated by MS and MS/MS analysis, confirming about 82% of the recombinant sequence. The specific activity of the purified and dialyzed cf-HMGR preparation was enriched about 85-fold with respect to the supernatant obtained from cell lysate. The effective, cheap, and easy method here described could be useful for screening statin-like molecules, so simplifying the search for new drugs with hypocholesterolemic effects.


Assuntos
Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sequência de Aminoácidos/genética , Domínio Catalítico , Cromatografia de Afinidade , Clonagem Molecular , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Expressão Gênica , Humanos , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
17.
Cells ; 8(11)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717378

RESUMO

Thioalbamide, a thioamidated peptide biosynthesized by Amycolatopsis alba, is a thioviridamide-like molecule, and is part of a family of natural products representing a focus of biotechnological and pharmaceutical research in recent years due to their potent anti-proliferative and cytotoxic activities on malignant cells. Despite the high antitumor potential observed at nanomolar concentrations, the mechanisms underlying thioalbamide activity are still not known. In this work, the cellular effects induced by thioalbamide treatment on breast cancer cell lines were evaluated for the first time, highlighting the ability of this microbial natural peptide to induce mitochondrial dysfunction, oxidative stress, and apoptotic cell death. Furthermore, we demonstrate that thioalbamide can inhibit the propagation of cancer stem-like cells, which are strongly dependent on mitochondrial function and are responsible for chemotherapy resistance, metastasis, and tumor recurrence.


Assuntos
Actinobacteria/metabolismo , Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Actinobacteria/química , Amycolatopsis , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Estrutura Molecular , Biossíntese Peptídica , Peptídeos/química , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Antioxidants (Basel) ; 8(6)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226797

RESUMO

Inflammation represents an adaptive response generated by injuries or harmful stimuli. Natural remedies represent an interesting alternative to traditional therapies, involving several biochemical pathways. Besides, the valorization of agrochemical wastes nowadays seems to be a feasible way to reduce the health spending and improve the accessibility at bioactive natural compounds. In this context, the chemical composition of three Glycyrrhiza glabra L. (licorice) leaf extracts, obtained through maceration or ultrasound-assisted method (fresh and dried leaves) was investigated. A guided fractionation obtained three main components: pinocembrin, glabranin and licoflavanone. All the extracts showed similar antioxidant properties, evaluated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH) or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Diammonium Salt (ABTS) assay, while, among the isolated compounds, licoflavanone exhibited the best antioxidant activity. The anti-inflammatory activity of the extracts and the purified compounds was investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. Extract C and licoflavanone showed a good anti-inflammatory activity without affecting cell viability, as they decreased nitrite levels even when used at 12.5 µg/mL (p < 0.005) and 50 µM concentration (p < 0.001), respectively. Interestingly, licoflavanone markedly decreased pro-inflammatory cytokines and cyclooxygenase 2/inducible nitric oxide synthase (COX-2/iNOS) expression levels (p < 0.001). A modulation of nuclear factor kappa B/mitogen-activated protein kinases (NF-kB/MAPK) pathway underlay such behavior, highlighting the potential of this natural compound as a new scaffold in anti-inflammatory drug research.

19.
Biomed Pharmacother ; 107: 967-978, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257409

RESUMO

AIMS: The bioactivities of Santolina corsica Jord. & Fourr. n-hexane (EHS) and methanol (EMS) extracts were evaluated in relation to their chemical profile. MAIN METHODS: EHS and EMS were analysed by gas chromatography-mass spectrometry () and high performance liquid chromatography-diode array detection (HPLC-DAD), respectively. Antioxidant activity was determined by ß-carotene bleaching, Ferric Reducing Activity Power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) tests. Nitric oxide (NO) production was assessed in LPS-stimulated RAW 264.7 cells. Anti-proliferative activity was evaluated by MTT assay on A549, HeLa, PC3, MCF-7, MDA-MB-231 cancer cells, and non-tumorigenic MCF10 A cells. Cell motility, migration and invasion were assessed by wound-healing scratch, migration and invasion assays, respectively. DNA fragmentation was tested by TUNEL assay. Cells morphology was studied by phase-contrast microscopy. Procaspase-8, -9, poly (ADP-ribose) polymerase and COX-2 expression levels were evaluated by immunoblotting analysis. KEY FINDINGS: Kaempferol-3-O-glucoside (5878.67 mg/100 g of extract), chlorogenic acid (746.11 mg/100 g), and rosmarinic acid (550.16 mg/100 g) were the dominant EMS constituents. EHS showed myrcene (18.86%) as the main compound, followed by palmitic acid methyl and ethyl esters (9.35 and 9.16%, respectively), ß-phellandrene (8.48%), and ar-curcumene (5.63%). Both extracts showed promising anti-proliferative activity on all tested cancer cells, without inducing cytotoxicity in non-tumorigenic cells MCF-10 A. Moreover, extracts inhibited motility, migration, and invasion of MDA-MB-231 cells, inducing apoptosis. EHS decreased NO production, showing anti-inflammatory activity. SIGNIFICANCE: S. corsica extracts might be potentially useful in cancer treatment, since reduce invasive and migratory potential of MDA-MB-231 cells triggering apoptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Asteraceae/química , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Fragmentação do DNA/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Marcação In Situ das Extremidades Cortadas , Invasividade Neoplásica/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Solventes/química
20.
J Biochem ; 164(4): 313-322, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893873

RESUMO

Several ATP-depending reactions take place in the endoplasmic reticulum (ER). Although in Saccharomyces cerevisiae ER the existence of a Sac1p-dependent ATP transport system was already known, its direct involvement in ATP transport was excluded. Here we report an extensive biochemical characterization of a partially purified adenine nucleotide transport system (ANTS) not dependent on Sac1p. Highly purified ER membranes from the wild-type and Δsac1 yeast strains reconstituted into liposomes transported ATP with the same efficiency. A chromatography on hydroxyapatite was used to partially purify ANTS from Δsac1 ER extract. The two ANTS-enriched transport activity eluted fractions showed essentially the presence of four bands, one having an apparent MW of 56 kDa, similar to that observed for ANTS identified in rat liver ER. The two fractions reconstituted into liposomes efficiently transported, by a strict counter-exchange mechanism, ATP and ADP. ATP transport was saturable with a Km of 0.28 mM. The ATP/ADP exchange mechanism and the kinetic constants suggest that the main physiological role of ANTS is to catalyse the transport of ATP into ER, where it is used in several energy-requiring reactions and to export back to the cytosol the ADP produced.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Retículo Endoplasmático/química , Espectrometria de Massas , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...