Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Fertil Dev ; 20(5): 598-605, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18577357

RESUMO

The aim of the present study was to determine whether analogues of gonadotrophin-releasing hormone (GnRH) could be used to both induce an acute testosterone response and suppress anterior pituitary function in male koalas, and induce a luteal phase in female koalas. Experiment 1 characterised the steroidogenic response of male koalas to administration of 30 microg (4.3 microg kg(-1)) natural-sequence GnRH. Intra-muscular injection of natural-sequence GnRH induced the release of LH and testosterone with peak concentrations at 30 min (3.7 +/- 1.9 ng mL(-1)) and 2 h (5.4 +/- 0.5 ng mL(-1)), respectively. In Experiment 2, a single injection of the GnRH antagonist acyline (100 microg (14.3 microg kg(-1)) or 500 microg (71.4 microg kg(-1))) did not influence the testosterone response to subsequent injections of natural-sequence GnRH. In Experiment 3, 4 microg (~0.67 microg kg(-1)) of the GnRH agonist buserelin induced a luteal phase in five female koalas based on a LH surge, secretion of progestogen, and a normal-length oestrous cycle. The findings have shown that (1) natural-sequence GnRH can be used to test gonadotroph cell function and determine the testosterone-secreting capacity of male koalas, (2) the GnRH antagonist, acyline, at the dose rates used, does not suppress the pituitary-testis axis in male koalas, and (3) the GnRH agonist, buserelin, induces a normal luteal phase in female koalas.


Assuntos
Busserrelina/farmacologia , Hormônio Liberador de Gonadotropina/análogos & derivados , Gônadas/efeitos dos fármacos , Oligopeptídeos/farmacologia , Phascolarctidae/fisiologia , Hipófise/efeitos dos fármacos , Animais , Feminino , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Gônadas/fisiologia , Antagonistas de Hormônios/farmacologia , Masculino , Indução da Ovulação/veterinária , Phascolarctidae/sangue , Testes de Função Hipofisária , Hipófise/fisiologia , Testosterona/sangue
2.
Biol Reprod ; 78(4): 661-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18094357

RESUMO

Artificial insemination in the koala using chilled, electroejaculated semen provides for a marked improvement in the reproductive and genetic management of captive koala colonies in Australia and internationally, and makes available the option of using semen collected from wild populations to expand restricted gene pools. Dilution of koala semen for artificial insemination is complicated because koalas are induced ovulators, and it is thought that ovulating factors are present in the semen, so that semen extension for preservation purposes might be anticipated to result in a failure to induce ovulation. The first two experiments of this study were designed to determine whether artificial insemination using undiluted, extended, and extended-chilled semen collected by electroejaculation was capable of inducing a luteal phase and/or the production of pouch young. In Experiment 1, 1 ml undiluted electroejaculated semen, 2 ml diluted (1:1) semen, and 1 ml diluted (1:1) semen resulted in seven of nine, six of nine, and six of nine koalas showing a luteal phase, respectively; four pouch young were produced in each treatment. A second artificial insemination experiment was conducted in which 2 ml diluted (1:1) semen was administered in three groups of nine koalas. The first group received semen that had been collected and diluted immediately without chilling, the second group was deposited with semen stored chilled for 24 h, and the final group received semen that had been chilled for 72 h. In the first group, five females had a luteal phase, but none became pregnant. In group 2, two of the five females that had a luteal phase gave birth, whereas in group 3, four of the six females that had a luteal phase produced pouch young. In addition, experiment 3 was conducted to determine whether it was possible to produce pouch young by naturally mating koalas that were in the latter stages of their behavioral estrus; this information is important to the logistics of transporting koala semen for artificial insemination by establishing the maximum time frame in which females might be expected to shed a fertile oocyte. Of the 12 females mated on Day 8 of estrus, 6 gave birth, whereas only 3 of the 10 females naturally mated on Day 10 of estrus produced pouch young. The majority of females (21 of 22) in experiment 3 showed evidence of a luteal phase. Together, these experiments have shown that it is possible to use undiluted, extended, or extended-chilled semen to produce koala offspring up to Day 8 of estrus at conception rates similar to those achieved following natural mating. These findings represent a significant advancement in the use of reproductive technology in marsupials and provide the basis for the shipment of koala semen over long distances. The pouch young produced in this study represent the first marsupials born following artificial insemination of extended-chilled semen and bring the total number of koalas produced by artificial insemination to 31.


Assuntos
Temperatura Baixa , Ejaculação , Inseminação Artificial/veterinária , Phascolarctidae/fisiologia , Preservação do Sêmen/veterinária , Coleta de Tecidos e Órgãos/veterinária , Animais , Estimulação Elétrica , Ciclo Estral , Feminino , Inseminação Artificial/métodos , Hormônio Luteinizante/sangue , Masculino , Gravidez , Soluções , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Coleta de Tecidos e Órgãos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...