Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(8): 3117-3130, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37498226

RESUMO

P-glycoprotein (P-gp) is a promiscuous small molecule transporter whose overexpression in cancer is associated with multidrug resistance (MDR). In these instances, anticancer drugs can select for P-gp-overexpressing cells, leading to cancer recurrence with an MDR phenotype. To avoid selection for MDR cancers and inform individual patient treatment plans, it is critical to noninvasively identify P-gp-overexpressing tumors prior to administration of chemotherapy. We report the facile free radical copolymerization of quinidine, a competitive inhibitor of P-gp, and acrylic acid to generate multiplexed polymeric P-gp-targeted imaging agents with tunable quinidine content. Copolymer targeting was demonstrated in a nude mouse xenograft model. In xenografts overexpressing P-gp, copolymer distribution was enhanced over two-fold compared to the negative control of poly(acrylic acid) regardless of quinidine content. In contrast, accumulation of the copolymers in xenografts lacking P-gp was equivalent to poly(acrylic acid). This work forms the foundation for a unique approach toward the phenotype-specific noninvasive imaging of MDR tumors and is the first in vivo demonstration of copolymer accumulation through the active targeting of P-gp.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Quinidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Polímeros/farmacologia
2.
Front Bioeng Biotechnol ; 10: 867119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402394

RESUMO

Vaccines represent one of the most successful public health initiatives worldwide. However, despite the vast number of highly effective vaccines, some infectious diseases still do not have vaccines available. New technologies are needed to fully realize the potential of vaccine development for both emerging infectious diseases and diseases for which there are currently no vaccines available. As can be seen by the success of the COVID-19 mRNA vaccines, nanoscale platforms are promising delivery vectors for effective and safe vaccines. Synthetic nanoscale platforms, including liposomes and inorganic nanoparticles and microparticles, have many advantages in the vaccine market, but often require multiple doses and addition of artificial adjuvants, such as aluminum hydroxide. Biologically derived nanoparticles, on the other hand, contain native pathogen-associated molecular patterns (PAMPs), which can reduce the need for artificial adjuvants. Biological nanoparticles can be engineered to have many additional useful properties, including biodegradability, biocompatibility, and are often able to self-assemble, thereby allowing simple scale-up from benchtop to large-scale manufacturing. This review summarizes the state of the art in biologically derived nanoparticles and their capabilities as novel vaccine platforms.

3.
Nat Chem Biol ; 16(2): 122-125, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31873221

RESUMO

We have identified a molecular interaction between the reversibly oxidized form of protein tyrosine phosphatase 1B (PTP1B) and 14-3-3ζ that regulates PTP1B activity. Destabilizing the transient interaction between 14-3-3ζ and PTP1B prevented PTP1B inactivation by reactive oxygen species and decreased epidermal growth factor receptor phosphorylation. Our data suggest that destabilizing the interaction between 14-3-3ζ and the reversibly oxidized and inactive form of PTP1B may establish a path to PTP1B activation in cells.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas 14-3-3/metabolismo , Biotinilação , Ativação Enzimática , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Oxirredução , Fosforilação , Mapas de Interação de Proteínas , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Tirosina/metabolismo
4.
Sci Rep ; 9(1): 12356, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451702

RESUMO

A two-step process of protein detection at a single molecule level using SERS was developed as a proof-of-concept platform for medical diagnostics. First, a protein molecule was bound to a linker in the bulk solution and then this adduct was chemically reacted with the SERS substrate. Traut's Reagent (TR) was used to thiolate Bovine serum albumin (BSA) in solution followed by chemical cross linking to a gold surface through a sulfhydryl group. A Glycine-TR adduct was used as a control sample to identify the protein contribution to the SER spectra. Gold SERS substrates were manufactured by electrochemical deposition. Solutions at an ultralow concentration were used for attaching the TR adducts to the SERS substrate. Samples showed the typical behavior of a single molecule SERS including spectral fluctuations, blinking and Raman signal being generated from only selected points on the substrate. The fluctuating SER spectra were examined using Principle Component Analysis. This unsupervised statistics allowed for the selecting of spectral contribution from protein moiety indicating that the method was capable of detecting a single protein molecule. Thus we have demonstrated, that the developed two-step methodology has the potential as a new platform for medical diagnostics.


Assuntos
Soroalbumina Bovina/análise , Imagem Individual de Molécula , Análise Espectral Raman , Animais , Área Sob a Curva , Bovinos , Glicina/análise , Indicadores e Reagentes , Análise de Componente Principal , Tirosina/análise
5.
Sci Prog ; 101(3): 273-292, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071918

RESUMO

Delivery of imaging agents and pharmaceutical payloads to the central nervous system (CNS) is essential for efficient diagnosis and treatment of brain diseases. However, therapeutic delivery is often restricted by the blood-brain barrier (BBB), which prevents transport of clinical compounds to their region of interest. This review discusses the methods that have been used to avoid or overcome this barrier, presenting the use of biologically-derived nanomaterial systems as an efficient strategy for the diagnosis and treatment of CNS diseases. Biological nanomaterials have many advantages over synthetic systems, including being biodegradable, biocompatible, easily surface functionalised for conjugation of targeting moieties, and are often able to self-assemble. These abilities are discussed in relation to various systems, including liposomes, dendrimers, and viral nanoparticles.


Assuntos
Barreira Hematoencefálica/metabolismo , Dendrímeros/química , Nanoconjugados/química , Nanopartículas/química , Animais , Permeabilidade Capilar , Dendrímeros/farmacocinética , Dendrímeros/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Nanoconjugados/uso terapêutico , Nanopartículas/uso terapêutico
6.
Nanomedicine ; 14(7): 1999-2008, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29665440

RESUMO

Fundamental challenges of targeting specific brain regions for treatment using pharmacotherapeutic nanoparticle (NP) carriers include circumventing the blood-brain-barrier (BBB) and tracking delivery. Angiopep-2 (AP2) has been shown to facilitate the transport of large macromolecules and synthetic nanoparticles across the BBB. Thus, conjugation of AP2 to an MS2 bacteriophage based NP should also permit transport across the BBB. We have fabricated and tested a novel MS2 capsid-based NP conjugated to the ligand AP2. The reaction efficiency was determined to be over 70%, with up to two angiopep-2 conjugated per MS2 capsid protein. When linked with a porphyrin ring, manganese (Mn2+) remained stable within MS2 and was MRI detectable. Nanoparticles were introduced intracerebroventricularly or systemically. Systemic delivery yielded dose dependent, non-toxic accumulation of NPs in the midbrain. Design of a multifunctional MRI compatible NP platform provides a significant step forward for the diagnosis and treatment of intractable brain conditions, such as tinnitus.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Levivirus/química , Imageamento por Ressonância Magnética , Nanopartículas/administração & dosagem , Peptídeos/química , Zumbido/tratamento farmacológico , Animais , Transporte Biológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Masculino , Nanopartículas/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...