Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862603

RESUMO

Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.

2.
Nat Microbiol ; 8(12): 2326-2337, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030907

RESUMO

Dimethylsulfoxonium propionate (DMSOP) is a recently identified and abundant marine organosulfur compound with roles in oxidative stress protection, global carbon and sulfur cycling and, as shown here, potentially in osmotolerance. Microbial DMSOP cleavage yields dimethyl sulfoxide, a ubiquitous marine metabolite, and acrylate, but the enzymes responsible, and their environmental importance, were unknown. Here we report DMSOP cleavage mechanisms in diverse heterotrophic bacteria, fungi and phototrophic algae not previously known to have this activity, and highlight the unappreciated importance of this process in marine sediment environments. These diverse organisms, including Roseobacter, SAR11 bacteria and Emiliania huxleyi, utilized their dimethylsulfoniopropionate lyase 'Ddd' or 'Alma' enzymes to cleave DMSOP via similar catalytic mechanisms to those for dimethylsulfoniopropionate. Given the annual teragram predictions for DMSOP production and its prevalence in marine sediments, our results highlight that DMSOP cleavage is likely a globally significant process influencing carbon and sulfur fluxes and ecological interactions.


Assuntos
Propionatos , Roseobacter , Sulfetos/metabolismo , Enxofre/metabolismo , Carbono
3.
Trends Microbiol ; 31(10): 992-994, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481345

RESUMO

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound with key ecological roles in marine environments. This paper offers a brief insight into the mechanisms, environmental diversity, and importance of DMSP-mediated marine microbial interactions, including algae-microzooplankton interactions, bacteria-microzooplankton interactions, and algae-bacteria interactions. We also highlight current challenges that warrant further investigation.


Assuntos
Compostos de Sulfônio , Interações Microbianas
4.
Bioprocess Biosyst Eng ; 46(5): 635-644, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36757455

RESUMO

To design bioprocesses utilising hydrocarbon-metabolising organisms (HMO) as biocatalysts, the effect of the organism on the hydrodynamics of bubble column reactor (BCR), such as gas holdup, needs to be investigated. Therefore, this study investigates the first use of an HMO, Alcanivorax borkumensis SK2, as a solid phase in the operation and hydrodynamics of a BCR. The study investigated the gas holdup in 3-phase and 4-phase systems in a BCR under ranges of superficial gas velocities (UG) from 1 to 3 cm/s, hydrocarbon (chain length C13-21) concentrations (HC) of 0, 5, and 10% v/v and microbial concentrations (MC) of 0, 0.35, 0.6 g/l. The results indicated that UG was the most significant parameter, as gas holdup increases linearly with increasing UG from 1 to 3 cm/s. Furthermore, the addition of hydrocarbons into the air-deionized water -SK2 system showed the highest increase in the gas holdup, particularly at high UG (above 2 cm/s). The solids (yeast, cornflour, and SK2) phases had differing effects on gas holdup, potentially due to the difference in surface activity. In this work, SK2 addition caused a reduction in the fluid surface tension in the bioprocess which therefore resulted in an increase in the gas holdup in BCR. This work builds upon previous investigations in optimising the hydrodynamics for bubble column hydrocarbon bioprocesses for the application of alkane bioactivation.


Assuntos
Alcanivoraceae , Hidrocarbonetos , Alcanos
5.
Microorganisms ; 9(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810191

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur molecules. Recently, many marine heterotrophic bacteria were shown to produce DMSP, but few studies have combined culture-dependent and independent techniques to study their abundance, distribution, diversity and activity in seawater or sediment environments. Here we investigate bacterial DMSP production potential in East China Sea (ECS) samples. Total DMSP (DMSPt) concentration in ECS seawater was highest in surface waters (SW) where phytoplankton were most abundant, and it decreased with depth to near bottom waters. However, the percentage of DMSPt mainly apportioned to bacteria increased from the surface to the near bottom water. The highest DMSP concentration was detected in ECS oxic surface sediment (OSS) where phytoplankton were not abundant. Bacteria with the genetic potential to produce DMSP and relevant biosynthesis gene transcripts were prominent in all ECS seawater and sediment samples. Their abundance also increased with depth and was highest in the OSS samples. Microbial enrichments for DMSP-producing bacteria from sediment and seawater identified many novel taxonomic groups of DMSP-producing bacteria. Different profiles of DMSP-producing bacteria existed between seawater and sediment samples and there are still novel DMSP-producing bacterial groups to be discovered in these environments. This study shows that heterotrophic bacteria significantly contribute to the marine DMSP pool and that their contribution increases with water depth and is highest in seabed surface sediment where DMSP catabolic potential is lowest. Furthermore, distinct bacterial groups likely produce DMSP in seawater and sediment samples, and many novel producing taxa exist, especially in the sediment.

6.
Nat Microbiol ; 4(11): 1815-1825, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427729

RESUMO

Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients1,2 that have roles in global sulfur cycling2, atmospheric chemistry3, signalling4,5 and, potentially, climate regulation6,7. The production of DMSP was previously thought to be an oxic and photic process that is mainly confined to the surface oceans. However, here we show that DMSP concentrations and/or rates of DMSP and DMS synthesis are higher in surface sediment from, for example, saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and we identified several previously unknown producers of DMSP. Most DMSP-producing isolates contained dsyB8, but some alphaproteobacteria, gammaproteobacteria and actinobacteria used a methionine methylation pathway independent of DsyB that was previously only associated with higher plants. These bacteria contained a methionine methyltransferase gene (mmtN)-a marker for bacterial synthesis of DMSP through this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all of the tested seawater samples and Tara Oceans bacterioplankton datasets, but were much more abundant in marine surface sediment. Approximately 1 × 108 bacteria g-1 of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth's surface, are environments with high levels of DMSP and DMS productivity, and that bacteria are important producers of DMSP and DMS within these environments.


Assuntos
Bactérias/classificação , Redes Reguladoras de Genes , Sedimentos Geológicos/microbiologia , Compostos de Sulfônio/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Água do Mar/microbiologia , Análise de Sequência de RNA
7.
Sci China Life Sci ; 62(10): 1296-1319, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31231779

RESUMO

Dimethyl sulfide (DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate (DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified. Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage. Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.


Assuntos
Sulfetos/química , Compostos de Sulfônio/química , Enxofre/química , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Liases de Carbono-Enxofre , Fungos/genética , Fungos/metabolismo , Genes Bacterianos , Oceanos e Mares , Filogenia , Fitoplâncton/genética , Fitoplâncton/metabolismo , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo
8.
Nat Microbiol ; 4(3): 540-542, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30700867

RESUMO

In the version of this Letter originally published, the Methods incorrectly stated that all phytoplankton cultures were sampled in mid-exponential phase. The low-nitrogen cultures were sampled in early stationary phase and at the point at which Fv/Fm values decreased, to indicate that cultures were experiencing low-nitrogen conditions. All other phytoplankton cultures were sampled in exponential phase. Growth and Fv/Fm data are provided here on high- and low-nitrogen cultures (Figs 1, 2 and 3) to clarify and support this correction. The Methods also stated that cell counting was done using a Beckman Multisizer 3 Coulter Counter, but a CASY Model TT Cell Counter was used.

9.
Nat Microbiol ; 3(4): 430-439, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483657

RESUMO

Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1-3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton 4 , and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified 5 . However, eukaryotic phytoplankton probably produce most of Earth's DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution.


Assuntos
Cloroplastos/enzimologia , Haptófitas/enzimologia , Metiltransferases/genética , Mitocôndrias/enzimologia , Compostos de Sulfônio/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Diatomáceas/enzimologia , Diatomáceas/genética , Dinoflagellida/enzimologia , Dinoflagellida/genética , Haptófitas/genética , Metiltransferases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fitoplâncton/metabolismo
10.
ISME J ; 11(10): 2379-2390, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28763056

RESUMO

Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 µmol DMS m-2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed 'MddA', which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates.


Assuntos
Bactérias/metabolismo , Microbiologia do Solo , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Metagenoma , Methylophilaceae/metabolismo , Solo/química , Compostos de Sulfidrila/análise , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo
11.
Nat Microbiol ; 2: 17009, 2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28191900

RESUMO

Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur molecules, a signalling molecule1, a key nutrient for marine microorganisms2,3 and the major precursor for gaseous dimethyl sulfide (DMS). DMS, another infochemical in signalling pathways4, is important in global sulfur cycling2 and affects the Earth's albedo, and potentially climate, via sulfate aerosol and cloud condensation nuclei production5,6. It was thought that only eukaryotes produce significant amounts of DMSP7-9, but here we demonstrate that many marine heterotrophic bacteria also produce DMSP, probably using the same methionine (Met) transamination pathway as macroalgae and phytoplankton10. We identify the first DMSP synthesis gene in any organism, dsyB, which encodes the key methyltransferase enzyme of this pathway and is a reliable reporter for bacterial DMSP synthesis in marine Alphaproteobacteria. DMSP production and dsyB transcription are upregulated by increased salinity, nitrogen limitation and lower temperatures in our model DMSP-producing bacterium Labrenzia aggregata LZB033. With significant numbers of dsyB homologues in marine metagenomes, we propose that bacteria probably make a significant contribution to oceanic DMSP production. Furthermore, because DMSP production is not solely associated with obligate phototrophs, the process need not be confined to the photic zones of marine environments and, as such, may have been underestimated.


Assuntos
Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Genes Bacterianos , Metiltransferases/genética , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Alphaproteobacteria/enzimologia , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Metagenoma , Metionina/biossíntese , Metionina/metabolismo , Metiltransferases/metabolismo , Oceanos e Mares , Filogenia , Água do Mar/química , Transdução de Sinais , Sulfetos/metabolismo
12.
PLoS One ; 9(5): e97660, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24848004

RESUMO

Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again, through the removal of the toxic product acrylyl-CoA.


Assuntos
Acrilatos/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Biblioteca Genômica , Metagenômica , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Clonagem Molecular , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Oxirredutases/genética , Sinorhizobium fredii/genética
13.
PLoS One ; 7(4): e35947, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563425

RESUMO

The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.


Assuntos
Acrilatos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Quinona Redutases/metabolismo , Rhodobacteraceae/enzimologia , Compostos de Sulfônio/metabolismo , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Mutagênese Insercional , Oxirredutases/metabolismo , Filogenia , Quinona Redutases/genética , Rhodobacteraceae/classificação , Compostos de Sulfônio/química
14.
Nat Rev Microbiol ; 9(12): 849-59, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21986900

RESUMO

The compatible solute dimethylsulphoniopropionate (DMSP) has important roles in marine environments. It is an anti-stress compound made by many single-celled plankton, some seaweeds and a few land plants that live by the shore. Furthermore, in the oceans it is a major source of carbon and sulphur for marine bacteria that break it down to products such as dimethyl sulphide, which are important in their own right and have wide-ranging effects, from altering animal behaviour to seeding cloud formation. In this Review, we describe how recent genetic and genomic work on the ways in which several different bacteria, and some fungi, catabolize DMSP has provided new and surprising insights into the mechanisms, regulation and possible evolution of DMSP catabolism in microorganisms.


Assuntos
Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Fungos/metabolismo , Plâncton/metabolismo , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Transporte Biológico , Liases de Carbono-Enxofre/genética , Ecossistema , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/genética , Genômica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica/genética , Oceanos e Mares , Plâncton/enzimologia , Plâncton/genética , Água do Mar/química
15.
ISME J ; 5(7): 1191-200, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21248856

RESUMO

The abundant compatible solute dimethylsulfoniopropionate (DMSP) is made by many marine algae. Different marine bacteria catabolise DMSP by various mechanisms, some of which liberate the environmentally important gas dimethyl sulfide (DMS). We describe an enzyme, DddY, which cleaves DMSP into DMS plus acrylate and is located in the bacterial periplasm, unlike other DMSP lyases that catalyse this reaction. There are dddY-like genes in strains of Alcaligenes, Arcobacter and Shewanella, in the ß-, ɛ- and γ-proteobacteria, respectively. In Alcaligenes, dddY is in a cluster of ddd and acu genes that resemble, but also have significant differences to, those in other bacteria that catabolise both DMSP and acrylate. Although production of DMS and transcription of Alcaligenes dddY are both apparently inducible by pre-growth of cells with DMSP, this substrate must be catabolised to form acrylate, the bona fide coinducer.


Assuntos
Alcaligenes/enzimologia , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Proteobactérias/enzimologia , Acrilatos/metabolismo , Alcaligenes/genética , Sequência de Aminoácidos , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Família Multigênica , Mutação , Proteobactérias/genética , Análise de Sequência de DNA , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo
16.
PLoS One ; 6(1): e15972, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21249136

RESUMO

Rhodobacter sphaeroides strain 2.4.1 is a widely studied bacterium that has recently been shown to cleave the abundant marine anti-stress molecule dimethylsulfoniopropionate (DMSP) into acrylate plus gaseous dimethyl sulfide. It does so by using a lyase encoded by dddL, the promoter-distal gene of a three-gene operon, acuR-acuI-dddL. Transcription of the operon was enhanced when cells were pre-grown with the substrate DMSP, but this induction is indirect, and requires the conversion of DMSP to the product acrylate, the bona fide co-inducer. This regulation is mediated by the product of the promoter-proximal gene acuR, a transcriptional regulator in the TetR family. AcuR represses the operon in the absence of acrylate, but this is relieved by the presence of the co-inducer. Another unusual regulatory feature is that the acuR-acuI-dddL mRNA transcript is leaderless, such that acuR lacks a Shine-Dalgarno ribosomal binding site and 5'-UTR, and is translated at a lower level compared to the downstream genes. This regulatory unit may be quite widespread in bacteria, since several other taxonomically diverse lineages have adjacent acuR-like and acuI-like genes; these operons also have no 5' leader sequences or ribosomal binding sites and their predicted cis-acting regulatory sequences resemble those of R. sphaeroides acuR-acuI-dddL.


Assuntos
Óperon/genética , Compostos de Sulfônio/metabolismo , Regulação Bacteriana da Expressão Gênica , Metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Sulfetos , Fatores de Transcrição , Transcrição Gênica
17.
Environ Microbiol ; 13(2): 427-38, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20880330

RESUMO

Ruegeria (previously Silicibacter) pomeroyi DSS-3, a marine roseobacter, can catabolize dimethylsulfoniopropionate (DMSP), a compatible solute that is made in large amounts by marine plankton and algae. This strain was known to demethylate DMSP via a demethylase, encoded by the dmdA gene, and it can also cleave DMSP, releasing the environmentally important volatile dimethyl sulfide (DMS) in the process. We found that this strain has two different genes, dddP and dddQ, which encode enzymes that cleave DMSP, generating DMS plus acrylate. DddP had earlier been found in other roseobacters and is a member of the M24 family of peptidases. The newly discovered DddQ polypeptide contains a predicted cupin metal-binding pocket, but has no other similarity to any other polypeptide with known function. DddP(-) and DddQ(-) mutants each produced DMS at significantly reduced levels compared with wild-type R. pomeroyi DSS-3, and transcription of the corresponding ddd genes was enhanced when cells were pre-grown with DMSP. Ruegeria pomeroyi DSS-3 also has a gene product that is homologous to DddD, a previously identified enzyme that cleaves DMSP, but which forms DMS plus 3-OH-propionate as the initial catabolites. However, mutations in this dddD-like gene did not affect DMS production, and it was not transcribed under our conditions. Another roseobacter strain, Roseovarius nubinhibens ISM, also contains dddP and has two functional copies of dddQ, encoded by adjacent genes. Judged by their frequencies in the Global Ocean Sampling metagenomic databases, DddP and DddQ are relatively abundant among marine bacteria compared with the previously identified DddL and DddD enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Rhodobacteraceae/enzimologia , Compostos de Sulfônio/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , DNA Bacteriano/genética , Dados de Sequência Molecular , Mutagênese Insercional , Rhodobacteraceae/genética , Alinhamento de Sequência , Sulfetos/metabolismo
18.
Environ Microbiol ; 12(2): 327-43, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19807777

RESUMO

A bacterium in the genus Halomonas that grew on dimethylsulfoniopropionate (DMSP) or acrylate as sole carbon sources and that liberated the climate-changing gas dimethyl sulfide in media containing DMSP was obtained from the phylloplane of the macroalga Ulva. We identified a cluster that contains genes specifically involved in DMSP catabolism (dddD, dddT) or in degrading acrylate (acuN, acuK) or that are required to break down both substrates (dddC, dddA). Using NMR and HPLC analyses to trace 13C- or 14C-labelled acrylate and DMSP in strains of Escherichia coli with various combinations of cloned ddd and/or acu genes, we deduced that DMSP is imported by the BCCT-type transporter DddT, then converted by DddD to 3-OH-propionate (3HP), liberating dimethyl sulfide in the process. As DddD is a predicted acyl CoA transferase, there may be an earlier, unidentified catabolite of DMSP. Acrylate is also converted to 3HP, via a CoA transferase (AcuN) and a hydratase (AcuK). The 3HP is predicted to be catabolized by an alcohol dehydrogenase, DddA, to malonate semialdehyde, thence by an aldehyde dehydrogenase, DddC, to acyl CoA plus CO2. The regulation of the ddd and acu genes is unusual, as a catabolite, 3HP, was a co-inducer of their transcription. This first description of genes involved in acrylate catabolism in any organism shows that the relationship between the catabolic pathways of acrylate and DMSP differs from that which had been suggested in other bacteria.


Assuntos
Acrilatos/metabolismo , Halomonas/metabolismo , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Genes Bacterianos , Halomonas/genética
19.
ISME J ; 4(1): 144-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19710707

RESUMO

Phytoplankton are the primary producers of the sulfur-containing compatible solute dimethylsulfoniopropionate (DMSP). These cells are consumed by mesozooplankton, which, in turn, may be eaten by marine vertebrates. From the gut of one such animal, the Atlantic Herring Clupea harengus, we isolated strains of the gamma-proteobacteria Pseudomonas and Psychrobacter that grew on DMSP as sole carbon source, and which produced the environmentally important sulfurous volatile dimethyl sulfide (DMS). In both bacterial genera, this ability was because of the previously identified gene dddD, which specifies an enzyme that liberates DMS from DMSP. DMS production was stimulated by pre-growth of cells on the substrate DMSP. This is the first identification of DMSP-degrading bacteria and their relevant genes in the gut microflora of any vertebrate.


Assuntos
Cordados/microbiologia , Trato Gastrointestinal/microbiologia , Redes e Vias Metabólicas/genética , Pseudomonas/metabolismo , Psychrobacter/metabolismo , Sulfetos/metabolismo , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Ordem dos Genes , Dados de Sequência Molecular , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Psychrobacter/classificação , Psychrobacter/genética , Psychrobacter/isolamento & purificação , Análise de Sequência de DNA , Compostos de Sulfônio/metabolismo
20.
J Exp Bot ; 59(5): 1059-67, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18281720

RESUMO

This paper describes the ddd genes that are involved in the production of the gas dimethyl sulphide from the substrate dimethylsulphoniopropionate (DMSP), an abundant molecule that is a stress protectant in many marine algae and a few genera of angiosperms. What is known of the arrangement of the ddd genes in different bacteria that can undertake this reaction is reviewed here, stressing the fact that these genes are probably subject to horizontal gene transfer and that the same functions (e.g. DMSP transport) may be accomplished by very different mechanisms. A surprising number of DMS-emitting bacteria are associated with the roots of higher plants, these including strains of Rhizobium and some rhizosphere bacteria in the genus Burkholderia. One newly identified strain that is predicted to make DMS is B. phymatum which is a highly unusual beta-proteobacterium that forms N(2)-fixing nodules on some tropical legumes, in this case, the tree Machaerium lunatum, which inhabits mangroves. The importance of DMSP catabolism and DMS production is discussed, not only in terms of nutritional acquisition by the bacteria but also in a speculative scheme (the 'messy eater' model) in which the bacteria may make DMS as an info-chemical to attract other organisms, including invertebrates and other plankton.


Assuntos
Bactérias/metabolismo , Biodiversidade , Sulfetos/metabolismo , Simbiose , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clima , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Transdução de Sinais , Compostos de Sulfônio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...