Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e8962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411514

RESUMO

The European Starling (Sturnidae: Sturnus vulgaris L.) is an invasive bird in North America where it is an agricultural pest. In British Columbia (Canada), the starling population increases in orchards and vineyards in autumn, where they consume and damage ripening fruits. Starlings also cause damage in dairy farms and feedlots by consuming and contaminating food and spreading diseases. Damage can be partly mitigated by the use of scare devices, which can disperse flocks until they become habituated. Large-scale trapping and euthanizing before starlings move to fields and farms could be a practical means of preventing damage, but requires knowledge of natal origin. Within a small (20,831 km2), agriculturally significant portion of south-central British Columbia, the Okanagan-Similkameen region, we used 21 trace elements in bone tissue to discriminate the spatial distribution of juvenile starlings and to reveal the geographic origin of the problem birds in fall. Stepwise discriminant analysis of trace elements classified juveniles to their natal origin (minimum discrimination distance of 12 km) with 79% accuracy. In vineyards and orchards, the majority (55%) of problem birds derive from northern portions of the valley; and the remaining 45% of problem birds were a mixture of local and immigrant/unassigned birds. In contrast, problem birds in dairy farms and feedlots were largely immigrants/unassigned (89%) and 11% were local from northern region of the valley. Moreover, elemental signatures can separate starling populations in the Valley yielding a promising tool for identifying the geographic origin of these migratory birds.

2.
PLoS One ; 12(3): e0172194, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28248995

RESUMO

Stable isotope ratios of grizzly bear (Ursus arctos) guard hair collected from bears on the lower Stikine River, British Columbia (BC) were analyzed to: 1) test whether measuring δ34S values improved the precision of the salmon (Oncorhynchus spp.) diet fraction estimate relative to δ15N as is conventionally done, 2) investigate whether measuring δ34S values improves the separation of diet contributions of moose (Alces alces), marmot (Marmota caligata), and mountain goat (Oreamnos americanus) and, 3) examine the relationship between collection date and length of hair and stable isotope values. Variation in isotope signatures among hair samples from the same bear and year were not trivial. The addition of δ34S values to mixing models used to estimate diet fractions generated small improvement in the precision of salmon and terrestrial prey diet fractions. Although the δ34S value for salmon is precise and appears general among species and areas, sulfur ratios were strongly correlated with nitrogen ratios and therefore added little new information to the mixing model regarding the consumption of salmon. Mean δ34S values for the three terrestrial herbivores of interest were similar and imprecise, so these data also added little new information to the mixing model. The addition of sulfur data did confirm that at least some bears in this system ate marmots during summer and fall. We show that there are bears with short hair that assimilate >20% salmon in their diet and bears with longer hair that eat no salmon living within a few kilometers of one another in a coastal ecosystem. Grizzly bears are thought to re-grow hair between June and October however our analysis of sectioned hair suggested at least some hairs begin growing in July or August, not June and, that hair of wild bears may grow faster than observed in captive bears. Our hair samples may have been from the year of sampling or the previous year because samples were collected in summer when bears were growing new hair. The salmon diet fraction increased with later hair collection dates, as expected if samples were from the year of sampling because salmon began to arrive in mid-summer. Bears that ate salmon had shorter hair and δ15N and δ34S values declined with hair length, also suggesting some hair samples were grown the year of sampling. To be sure to capture an entire hair growth period, samples must be collected in late fall. Early spring samples are also likely to be from the previous year but the date when hair begins to grow appears to vary. Choosing the longest hair available should increase the chance the hair was grown during the previous year and, maximize the period for which diet is measured.


Assuntos
Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia , Cabelo/crescimento & desenvolvimento , Estações do Ano , Enxofre/metabolismo , Ursidae/metabolismo , Animais , Feminino , Cabelo/metabolismo , Masculino , Isótopos de Enxofre/metabolismo
3.
Isotopes Environ Health Stud ; 50(3): 332-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25014121

RESUMO

Understanding the ecology and behaviour of endangered species is essential for developing effective management and conservation strategies. We used stable isotope analysis to investigate the foraging behaviour of critically endangered Mediterranean monk seals (Monachus monachus) in Greece. We measured carbon and nitrogen isotope ratios (expressed as δ(13)C and δ(15)N values, respectively) derived from the hair of deceased adult and juvenile seals and the muscle of their known prey to quantify their diets. We tested the hypothesis that monk seals primarily foraged for prey that occupy coastal habitats in Greece. We compared isotope values from seal hair to their coastal and pelagic prey (after correcting all prey for isotopic discrimination) and used these isotopic data and a stable isotope mixing model to estimate the proportion of coastal and pelagic resources consumed by seals. As predicted, we found that seals had similar δ(13)C values as many coastal prey species and higher δ(13)C values than pelagic species; these results, in conjunction with mean dietary estimates (coastal=61 % vs. pelagic=39 %), suggest that seals have a diverse diet comprising prey from multiple trophic levels that primarily occupy the coast. Marine resource managers should consider using the results from this study to inform the future management of coastal habitats in Greece to protect Mediterranean monk seals.


Assuntos
Dieta , Espécies em Perigo de Extinção , Focas Verdadeiras/metabolismo , Animais , Isótopos de Carbono/metabolismo , Cefalópodes/metabolismo , Decápodes/metabolismo , Feminino , Peixes/metabolismo , Grécia , Cabelo/química , Masculino , Modelos Teóricos , Músculo Esquelético/química , Isótopos de Nitrogênio/metabolismo
4.
Environ Sci Technol ; 47(4): 2001-7, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23331061

RESUMO

Metal speciation is important for understanding the toxicity of metals in aquatic systems, and can be predicted for mixtures of metals in presence of dissolved organic matter (DOM) with thermodynamic models such as WHAM VI. The influence of the DOM source (quality) has been demonstrated, but is presently neglected in predicting Cu activity (WHAM VI). Here we determined the effect of aluminum (Al) competition on copper (Cu) complexation for four different DOMs, from a high-colored DOM (more humic) to a low-colored DOM (less humic). In presence of Al, free Cu activities (defined as free ion activity) increased, consistent with competition between Cu and Al for the same binding sites on all DOM. The apparent competition decreased with increasing DOM color. Equilibrium modeling of Cu speciation with WHAM VI explained 49% of the variance in measured Cu activity. When modified to integrate DOM quality using a new empirical coefficient F related to DOM optical properties, Cu activities predicted from WHAM VI were significantly improved to about 80% of the observed variance explained. The effects of Al on Cu activity were well predicted by WHAM VI. Subsequently, we compared the relative effects of DOM concentration, DOM quality, and Al competition with other determinants of Cu activity represented in legislation and scientific literature (pH and hardness), and qualitatively ranked them by their influence on Cu activity for normal ranges encountered in fresh waters using WHAM VI. Our experimental results indicate that DOM quality is an important variable that should be included in predictive models of ion speciation (WHAM VI) and eco-toxicological models such as the biotic ligand model (BLM).


Assuntos
Alumínio/química , Cobre/química , Modelos Químicos , Compostos Orgânicos/química , Poluentes Químicos da Água/química
5.
Environ Sci Technol ; 38(10): 2865-72, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15212261

RESUMO

Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0-5 microM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu-gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of Fvaried by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.


Assuntos
Cobre/química , Cobre/farmacocinética , Oncorhynchus mykiss/metabolismo , Animais , Disponibilidade Biológica , Biomassa , Difusão , Água Doce/química , Brânquias/metabolismo , Eletrodos Seletivos de Íons , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA