Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36236472

RESUMO

RGB-D cameras have become common in many research fields since these inexpensive devices provide dense 3D information from the observed scene. Over the past few years, the RealSense™ range from Intel® has introduced new, cost-effective RGB-D sensors with different technologies, more sophisticated in both hardware and software. Models D415, SR305, and L515 are examples of successful cameras launched by Intel® RealSense™ between 2018 and 2020. These three cameras are different since they have distinct operating principles. Then, their behavior concerning depth estimation while in the presence of many error sources will also be specific. For instance, semi-transparent and scattering media are expected error sources for an RGB-D sensor. The main new contribution of this paper is a full evaluation and comparison between the three Intel RealSense cameras in scenarios with transparency and translucency. We propose an experimental setup involving an aquarium and liquids. The evaluation, based on repeatability/precision and statistical distribution of the acquired depth, allows us to compare the three cameras and conclude that Intel RealSense D415 has overall the best behavior namely in what concerns the statistical variability (also known as precision or repeatability) and also in what concerns valid measurements.


Assuntos
Software
2.
Med Image Anal ; 71: 102058, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930829

RESUMO

Deep learning techniques hold promise to develop dense topography reconstruction and pose estimation methods for endoscopic videos. However, currently available datasets do not support effective quantitative benchmarking. In this paper, we introduce a comprehensive endoscopic SLAM dataset consisting of 3D point cloud data for six porcine organs, capsule and standard endoscopy recordings, synthetically generated data as well as clinically in use conventional endoscope recording of the phantom colon with computed tomography(CT) scan ground truth. A Panda robotic arm, two commercially available capsule endoscopes, three conventional endoscopes with different camera properties, two high precision 3D scanners, and a CT scanner were employed to collect data from eight ex-vivo porcine gastrointestinal (GI)-tract organs and a silicone colon phantom model. In total, 35 sub-datasets are provided with 6D pose ground truth for the ex-vivo part: 18 sub-datasets for colon, 12 sub-datasets for stomach, and 5 sub-datasets for small intestine, while four of these contain polyp-mimicking elevations carried out by an expert gastroenterologist. To verify the applicability of this data for use with real clinical systems, we recorded a video sequence with a state-of-the-art colonoscope from a full representation silicon colon phantom. Synthetic capsule endoscopy frames from stomach, colon, and small intestine with both depth and pose annotations are included to facilitate the study of simulation-to-real transfer learning algorithms. Additionally, we propound Endo-SfMLearner, an unsupervised monocular depth and pose estimation method that combines residual networks with a spatial attention module in order to dictate the network to focus on distinguishable and highly textured tissue regions. The proposed approach makes use of a brightness-aware photometric loss to improve the robustness under fast frame-to-frame illumination changes that are commonly seen in endoscopic videos. To exemplify the use-case of the EndoSLAM dataset, the performance of Endo-SfMLearner is extensively compared with the state-of-the-art: SC-SfMLearner, Monodepth2, and SfMLearner. The codes and the link for the dataset are publicly available at https://github.com/CapsuleEndoscope/EndoSLAM. A video demonstrating the experimental setup and procedure is accessible as Supplementary Video 1.


Assuntos
Algoritmos , Endoscopia por Cápsula , Animais , Simulação por Computador , Imagens de Fantasmas , Suínos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...