Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 23(4): e202100752, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34931746

RESUMO

The fine structure in the spectral lines of the visible fluorescence of Tb3+ complexes are replaced by a single peak in the case of a singular molecular complex Tb(H3 PTC)3 , where H4 PTC represents perylene-3,4,9,10-tetracarboxylic acid, and its emission wavelength depends on the film thickness. This single peak challenges the old creed that the f-orbital electrons of Tb3+ are always protected from the influence of the surrounding atoms. We perform density functional theory calculations to show that the wavefunction of the ground state is localized and in addition, spin-polarized, and this facilitates fluorescent transitions under UV to the first excited state instead of the fundamental state. We discuss the possibility of making a spintronic device with the molecule, Tb(H3 PTC)3 .

2.
Phys Chem Chem Phys ; 22(36): 20744-20750, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32909018

RESUMO

An organic-based bright white light emitting compound, namely Tb(H3PTC)3 [H4PTC = perylene-3,4,9,10-tetracarboxylic acid], able to be used as part of a white diode and as a part of a RGB system that can withstand high temperatures (∼700 K), is developed using perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and terbium(iii) nitrate pentahydrate as precursors by hydrothermal synthesis. Using PTCDA as the red emitter and the new derivative of it, Tb(H3PTC)3, as the blue-green emitter, along with a common deep blue LED can form a RGB system for display technologies, around room temperature. Temperature-dependent photoluminescence properties of the Tb(H3PTC)3 compound are also investigated for the involved excitonic-emission processes and the respective recombination lifetimes. The terbium(iii) complex was prepared using a procedure that is reproducible, easily modifiable, inexpensive, and environmentally friendly, opening new pathways for its large-scale applications. Unlike PTCDA, Tb(H3PTC)3 has been shown to be soluble in N-methyl-2-pyrrolidone (NMP) as well as in dilute aqueous solutions of this organic solvent in a straightforward procedure. The light emission properties are intimately correlated with the molecular structure and electronic properties of Tb(H3PTC)3 elucidated by experimental results of X-ray Absorption Near Edge Spectroscopy (XANES), Extended X-ray Absorption Fine Structure (EXAFS) and Density Functional Theory (DFT) calculations. A bright fluorescence yield is attained with a small amount of material either in solution or in solid form showing its potential to be used in state-of-the-art organic optoelectronic devices.

3.
Ultrason Sonochem ; 40(Pt A): 742-747, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946481

RESUMO

A Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and synchrotron X-ray diffraction study on clustered C3N4 nanoparticles (nanoflakes) is conducted on green-chemistry synthesized samples obtained from chitosan through high power sonication. Morphological aspects and the electronic characteristics are investigated. The observed bandgap of the nanoflakes reveals the presence of different phases in the material. Combining STM morphology, STS spectra and X-ray diffraction (XRD) results one finds that the most abundant phase is graphitic C3N4. A high density of defects is inferred from the XRD measurements. Additionally, STM-electroluminescence (STMEL) is detected in C3N4 nanoflakes deposited on a gold substrate. The tunneling current creates photons that are three times more energetic than the tunneling electrons of the STM sample. We ponder about the two most probable models to explain the observed photon emission energy: either a nonlinear optical phenomenon or a localized state emission.

4.
J Chem Phys ; 139(16): 164908, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24182080

RESUMO

The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

5.
J Phys Condens Matter ; 24(1): 015801, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22155890

RESUMO

The integrated photoluminescence intensity in thin films of 'Super Yellow' copolymer has been analyzed using a Mott-like temperature dependence. This has enabled us to observe contributions from two emission channels, indicative of exciton recombination proceeding from two distinct origins. At high temperature, interchain thermally activated exciton energy transfer and migration dominates, resulting in large scale quenching of the integrated emission intensity and hence the photoluminescence quantum yield. However, at relatively low temperature, an additional increase of the integrated emission intensity occurs. This new channel of emission has been attributed to recombination from excitons where intrachain exciton energy transfer between adjacent subunits of the copolymer backbone becomes hindered. The activation energy barriers that control both of these emission channels have been obtained and are correlated with chain backbone degrees of freedom.


Assuntos
Substâncias Luminescentes/química , Medições Luminescentes , Polímeros/química , Elétrons , Transferência de Energia , Temperatura
6.
J Chem Phys ; 134(10): 104903, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405189

RESUMO

Steady-state and time-resolved photoluminescence have been used to investigate the optical properties of bilayer and blend films made from poly(9,9-dioctyl-fluorene-2,7-diyl) (PFO) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH PPV). Energy transfer has been observed in both systems. From steady-state photoluminescence measurements, the energy transfer was characterized by the effective enhancement of the MEH PPV emission intensity after exciting the donor states. Relatively faster decays for the PFO donor emission have been observed in the blends as well as in the bilayer structures, confirming effective energy transfer in both structures. In contrast to the bilayers, the time decay of the acceptor emission in the blends presents a long decay component, which was assigned to the exciplex formation in these samples. For the blends the acceptor emission is in fact a composition of exciplex and MEH PPV emissions, the later being due to Förster energy transfer from PFO. In the bilayers, the exciplex is not observed and temperature dependence photoluminescence measurements show that exciton migration has no significant contribution to the energy transfer. The efficiency and very long range of the energy transfer in the bilayers is explained assuming a surface-surface interaction geometry where the donor/acceptor distances involved are much longer than the common Förster radius.

7.
J Chem Phys ; 128(9): 094902, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18331112

RESUMO

The temperature dependence of the photoluminescence properties of a thin film of poly[2-methoxy-5-(2(')-ethylhexyloxy)-p-phenylene-vinylene], MEH-PPV, fabricated by spin coating, is analyzed. The evolution with temperature of the peak energy of the purely electronic transition, of the first vibronic band, of the effective conjugation length, and of the Huang-Rhys factors are discussed. The asymmetric character of the pure electronic transition peak and the contribution of the individual vibrational modes to the first vibronic band line shape are considered by a model developed by Cury et al. [J. Chem. Phys. 121, 3836 (2004)]. The temperature dependence of the Huang-Rhys factors of the main vibrational modes pertaining to the first vibronic band allows us to identify two competing vibrational modes. These results show that the electron coupling to different vibrational modes depends on temperature via reduction of thermal disorder.

8.
Ultramicroscopy ; 108(4): 302-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17544214

RESUMO

Electric force microscopy (EFM) was employed in the electrical characterization of a blend of thermoplastic polyurethane (TPU) and poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene) (MEH-PPV) conjugated polymer. Although qualitative EFM interpretation is straightforward, its quantitative analysis always relies on approximated models. The extraction of physically reasonable parameters is normally assumed as a proof of validity of the theoretical model employed. In order to gather information about electric properties of this blend and to test the EFM technique itself, two distinct and discordant models were developed in this work to fit experimental EFM data. Even though MEH-PPV is regarded as a conductor in one model and as a dielectric in the other, both models yielded coherent and reasonable electrical properties for this blend. Such unexpected results are used to discuss the robustness or frailty of EFM in the analysis of complex materials.

9.
J Nanosci Nanotechnol ; 7(9): 3071-80, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18019131

RESUMO

The production and physical properties of nanowires and nanoribbons formed by methylphosphonic acid (MPA)--CH3PO(OH)2--were investigated. These structures are formed on an aluminum coated substrate when immersed in an ethanolic solution of MPA for several days. A careful investigation of the growth conditions resulted in a narrow window of solution concentrations and temperatures for the successful development of nanowires and nanoribbons. Several different techniques were employed to characterize these nanostructures: (1) Photoluminescence experiments showed a strong emission at 2.3 eV (green), which is visible to the naked eye; (2) X-ray diffraction experiments indicated a significant cristalinity, in agreement with atomic force microscopy (AFM) and transmission electron microscopy (TEM) morphology images, which show organized nano-scale wires and ribbons, (furthermore, AFM-Phase and TEM images also suggest that nanoribbons are formed by well-aligned nanowires); (3) Conductive-AFM experiments revealed an intermediary conductivity for these structures (10(-1)/Ohm x m), which is similar to some intrinsic semiconductors and; (4) finally, Infrared, Raman, and X-Ray Photoelectron Spectroscopies produced information about the contents, structure, and composition of both wires and ribbons.


Assuntos
Nanopartículas/química , Nanotubos de Carbono/química , Nanofios/química , Compostos Organofosforados/química , Absorção , Alumínio/química , Luz , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanotecnologia/métodos , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Temperatura , Difração de Raios X
10.
J Chem Phys ; 121(8): 3836-9, 2004 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-15303952

RESUMO

The photoluminescence (PL) properties of thin films of the conjugated polymer [poly(2,5-bis(2(')-ethyl-hexyl)-1,4-phenylenevinylene] have been investigated. At low temperatures the PL spectra show a narrow peak for the electronic transition and a series of well defined vibronic sidebands, which clearly reveal the electron coupling with two different vibronic modes. The purely electronic transition peak is observed to be very asymmetric so that it cannot be adjusted by a single Lorentzian or Gaussian function. In order to understand and explain this asymmetry we have considered a model where the purely electronic transition line shape is partially generated by a broadened square-root singularity representing one-dimensional electron states, and partially by localized (zero-dimensional) states. The localized states are assumed to be those very close to the band edges and are represented in our model by a single Gaussian function. Numerical Franck-Condon analysis was performed, resulting in a very good agreement between the theoretical and the experimental emission spectra. This procedure has confirmed the one-dimensional character of the electron states as the basis for the understanding of the purely electronic line shape asymmetry in the PL spectra of conjugated polymers at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...