Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neural Eng ; 17(1): 016014, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31648208

RESUMO

OBJECTIVE: We have demonstrated previously that microstimulation in the dorsal root ganglia (DRG) can selectively evoke activity in primary afferent neurons in anesthetized cats. This study describes the results of experiments focused on characterizing the postural effects of DRG microstimulation in awake cats during quiet standing. APPROACH: To understand the parameters of stimulation that can affect these postural shifts, we measured changes in ground reaction forces (GRF) while varying stimulation location and amplitude. Four animals were chronically implanted at the L6 and L7 DRG with penetrating multichannel microelectrode arrays. During each week of testing, we identified electrode channels that recruited primary afferent neurons with fast (80-120 m s-1) and medium (30-75 m s-1) conduction velocities, and selected one channel to deliver current-controlled biphasic stimulation trains during quiet standing. MAIN RESULTS: Postural responses were identified by changes in GRFs and were characterized based on their magnitude and latency. During DRG microstimulation, animals did not exhibit obvious signs of distress or discomfort, which could be indicative of pain or aversion to a noxious sensation. Across 56 total weeks, 13 electrode channels evoked behavioral responses, as detected by a significant change in GRF. Stimulation amplitude modulated the magnitude of the GRF responses for these 13 channels (p  < 0.001). It was not possible to predict whether or not an electrode would drive a behavioral response based on information including conduction velocity, recruitment threshold, or the DRG in which it resided. SIGNIFICANCE: The distinct and repeatable effects on the postural response to low amplitude (<40 µA) DRG microstimulation support that this technique may be an effective way to restore somatosensory feedback after neurological injuries such as amputation.


Assuntos
Gânglios Espinais/fisiologia , Equilíbrio Postural/fisiologia , Vigília/fisiologia , Animais , Gatos , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Masculino , Microeletrodos
3.
J Mot Behav ; 48(5): 446-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27253208

RESUMO

Prior work in amputees and partial limb immobilization have shown improved neural and behavioral outcomes in using their residual limb with prosthesis when undergoing observation-based training with a prosthesis-using actor compared to an intact limb. It was posited that these improvements are due to an alignment of user with the actor. It may be affected by visual angles that allow emphasis of critical joint actions which may promote behavioral changes. The purpose of this study was to examine how viewing perspective of observation-based training effects prosthesis adaptation in naïve device users. Twenty nonamputated prosthesis users learned how to use an upper extremity prosthetic device while viewing a training video from either a sagittal or coronal perspective. These views were chosen as they place visual emphasis on different aspects of task performance to the device. The authors found that perspective of actions has a significant role in adaptation of the residual limb while using upper limb prostheses. Perspectives that demonstrate elbow adaptations to prosthesis usage may enhance the functional motor outcomes of action observation therapy. This work has potential implications on how prosthetic device operation is conveyed to persons adapting to prostheses through action observation based therapy.


Assuntos
Amputados/reabilitação , Membros Artificiais , Educação de Pacientes como Assunto/métodos , Simulação de Paciente , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
4.
Neurorehabil Neural Repair ; 30(6): 573-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26438442

RESUMO

Background Previous studies have demonstrated improved neurobehavioral outcomes when prosthesis users learn task-specific behaviors by imitating movements of prosthesis users (matched limb) compared with intact limbs (mismatched limb). Objective This study is the first to use a unique combination of neurophysiological and task performance methods to investigate prosthetic device training strategies from a cognitive motor control perspective. Intact nonamputated prosthesis users (NAPUs) donned specially adapted prosthetic devices to simulate the wrist and forearm movement that persons with transradial limb loss experience. The hypothesis is that NAPUs trained with matched limb imitation would show greater engagement of parietofrontal regions and reduced movement variability compared with their counterparts trained with a mismatched limb. Methods Training elapsed over 3 days comprised alternating periods of video demonstration observation followed by action imitation. At the beginning and end of the training protocol, participants performed a cued movement paradigm while electroencephalography and electrogoniometry data were collected to track changes in cortical activity and movement variability, respectively. Results Matched limb participants showed greater engagement of motor-related areas while mismatched limb participants showed greater engagement of the parietooccipital system. Matched limb participants also showed lower movement variability. Conclusions These results indicate that the type of limb imitated influences neural and behavioral strategies for novel prosthetic device usage. This finding is important, as customary prosthetic rehabilitation with intact therapists involves mismatched limb imitation that may exacerbate challenges in adapting to new motor patterns demanded by prosthesis use.


Assuntos
Amputados/reabilitação , Movimento/fisiologia , Próteses e Implantes , Amplitude de Movimento Articular/fisiologia , Resultado do Tratamento , Extremidade Superior/inervação , Adolescente , Adulto , Análise de Variância , Fenômenos Biomecânicos , Eletroencefalografia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Rotação , Adulto Jovem
5.
Exp Brain Res ; 232(7): 2143-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24643547

RESUMO

Our previous work demonstrated that the action encoding parietofrontal network, which is crucial in planning and executing motor tasks, is less active in prosthesis users who imitate movements of intact actors (mismatched limb) versus prosthesis users (matched limb). Such activation could have behavioral consequences in prosthesis users rehabilitating with intact therapists. The goal was to identify behavioral effects of matched versus mismatched limb action imitation in naïve users of prostheses. Intact subjects donned a specially adapted prosthetic device to simulate the wrist and forearm movement that transradial amputees experience. While electrogoniometry was recorded, non-amputated prosthesis users (NAPUs) observed and imitated demonstrations of a skillful motor task performed by either an intact actor or NAPU. We hypothesized that NAPUs would elicit less motion variability when performing matched versus mismatched imitation. Matched imitation resulted in a significant decrease in shoulder motion variability compared with mismatched imitation. The matched group also developed elbow motion patterns similar to the NAPU demonstrator, while the mismatched group attempted patterns similar to the intact demonstrator. This suggests a behavioral advantage to matched imitation when adapting to a prosthetic device, as it yielded more consistent movements and facilitated development of new motor patterns. Further, these results suggest that when prosthesis users are faced with the impossible task of imitating movements of an intact hand, they perform this action with greater variability and poorer technique. This work has implications on how prosthetic device operation is conveyed to persons with amputation as their clinical interactions often involve mismatched limb imitation.


Assuntos
Membros Artificiais/psicologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Amplitude de Movimento Articular/fisiologia , Extremidade Superior/fisiologia , Adolescente , Adulto , Análise de Variância , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Fatores de Tempo , Extremidade Superior/inervação , Adulto Jovem
6.
Front Hum Neurosci ; 6: 182, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754516

RESUMO

The mirror neuron system (MNS) has been attributed with increased activation in motor-related cortical areas upon viewing of another's actions. Recent work suggests that limb movements that are similar and dissimilar in appearance to that of the viewer equivalently activate the MNS. It is unclear if this result can be observed in the action encoding areas in amputees who use prosthetic devices. Intact subjects and upper extremity amputee prosthesis users were recruited to view video demonstrations of tools being used by an intact actor and a prosthetic device user. All subjects pantomimed the movements seen in the video while recording electroencephalography (EEG). Intact subjects showed equivalent left parietofrontal activity during imitation planning after watching the intact or prosthetic arm. Likewise, when prosthesis users imitated prosthesis demonstrations, typical left parietofrontal activation was observed. When prosthesis users imitated intact actors, an additional pattern was revealed which showed greater activity in right parietal and occipital regions that are associated with the mentalizing system. This change may be required for prosthesis users to plan imitation movements in which the limb states between the observed and the observer do not match. The finding that prosthesis users imitating other prosthesis users showed typical left parietofrontal activation suggests that these subjects engage normal planning related activity when they are able to imitate a limb matching their own. This result has significant implications on rehabilitation, as standard therapy involves training with an intact occupational therapist, which could necessitate atypical planning mechanisms in amputees when learning to use their prosthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...