Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 5543, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692377

RESUMO

The COVID-19 caused by the SARS-CoV-2 virus was declared a pandemic disease in March 2020 by the World Health Organization (WHO). Structure-Based Drug Design strategies based on docking methodologies have been widely used for both new drug development and drug repurposing to find effective treatments against this disease. In this work, we present the developments implemented in the DockThor-VS web server to provide a virtual screening (VS) platform with curated structures of potential therapeutic targets from SARS-CoV-2 incorporating genetic information regarding relevant non-synonymous variations. The web server facilitates repurposing VS experiments providing curated libraries of currently available drugs on the market. At present, DockThor-VS provides ready-for-docking 3D structures for wild type and selected mutations for Nsp3 (papain-like, PLpro domain), Nsp5 (Mpro, 3CLpro), Nsp12 (RdRp), Nsp15 (NendoU), N protein, and Spike. We performed VS experiments of FDA-approved drugs considering the therapeutic targets available at the web server to assess the impact of considering different structures and mutations to identify possible new treatments of SARS-CoV-2 infections. The DockThor-VS is freely available at www.dockthor.lncc.br .


Assuntos
Tratamento Farmacológico da COVID-19 , Desenho de Fármacos , Reposicionamento de Medicamentos/métodos , Antivirais/farmacologia , Humanos , Internet , Simulação de Acoplamento Molecular/métodos , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
2.
Genet. mol. biol ; Genet. mol. biol;27(4): 611-615, Dec. 2004. ilus, tab
Artigo em Inglês | LILACS | ID: lil-391237

RESUMO

An approach to the hydrophobic-polar (HP) protein folding model was developed using a genetic algorithm (GA) to find the optimal structures on a 3D cubic lattice. A modification was introduced to the scoring system of the original model to improve the model's capacity to generate more natural-like structures. The modification was based on the assumption that it may be preferable for a hydrophobic monomer to have a polar neighbor than to be in direct contact with the polar solvent. The compactness and the segregation criteria were used to compare structures created by the original HP model and by the modified one. An islands' algorithm, a new selection scheme and multiple-points crossover were used to improve the performance of the algorithm. Ten sequences, seven with length 27 and three with length 64 were analyzed. Our results suggest that the modified model has a greater tendency to form globular structures. This might be preferable, since the original HP model does not take into account the positioning of long polar segments. The algorithm was implemented in the form of a program with a graphical user interface that might have a didactical potential in the study of GA and on the understanding of hydrophobic core formation.


Assuntos
Modelos Moleculares , Dobramento de Proteína , Algoritmos , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA