Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Ther ; 15(4): 289-97, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18046428

RESUMO

Effective gene therapy for haemophilia A necessitates a vector system that is not subject to a pre-existing immune response, has adequate coding capacity, gives long-term expression and preferably can target non-dividing cells. Vector systems based on lentiviruses such as equine infectious anaemia virus (EIAV) fulfil these criteria for the delivery of factor VIII (FVIII). We have found that B domain-deleted (BDD) FVIII protein inhibits functional viral particle production when co-expressed with the EIAV vector system. Although particle numbers (as measured by reverse transcriptase activity) are near normal, RNA genome levels are reduced and measurement of integrated copies revealed the virus is severely defective in its ability to transduce target cells. This is due to the absence of sufficient vesicular stomatitis virus glycoprotein (VSV-G) envelope on viral particles derived from cells expressing FVIII. By using an internal tissue-specific promoter, that has low activity in the producer cells, to drive expression of FVIII we have overcome this inhibitory effect allowing us to generate titres approaching those obtained with vector genomes encoding reporter genes. Furthermore, we report that codon optimization of the full-length FVIII gene increased vector titres approximately 10-fold in addition to substantially improving expression per integrated vector copy.


Assuntos
Fator VIII/genética , Vetores Genéticos , Vírus da Anemia Infecciosa Equina/genética , Linhagem Celular , Códon , Terapia Genética , Hemofilia A/terapia , Humanos , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
2.
Gut ; 52(10): 1494-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12970144

RESUMO

BACKGROUND: A substantial group of patients with cholestatic liver disease in infancy excrete, as the major urinary bile acids, the glycine and taurine conjugates of 7alpha-hydroxy-3-oxo-4-cholenoic acid and 7alpha,12alpha-dihydroxy-3-oxo-4-cholenoic acid. It has been proposed that some (but not all) of these have mutations in the gene encoding delta(4)-3-oxosteroid 5beta-reductase (SRD5B1; AKR1D1, OMIM 604741). AIMS: Our aim was to identify mutations in the SRD5B1 gene in patients in whom chenodeoxycholic acid and cholic acid were absent or present at low concentrations in plasma and urine, as these seemed strong candidates for genetic 5beta-reductase deficiency. PATIENTS AND SUBJECTS: We studied three patients with neonatal onset cholestatic liver disease and normal gamma-glutamyl transpeptidase in whom 3-oxo-delta(4) bile acids were the major bile acids in urine and plasma and saturated bile acids were at low concentration or undetectable. Any base changes detected in SRD5B1 were sought in the parents and siblings and in 50 ethnically matched control subjects. METHODS: DNA was extracted from blood and the nine exons of SRD5B1 were amplified and sequenced. Restriction enzymes were used to screen the DNA of parents, siblings, and controls. RESULTS: Mutations in the SRD5B1 gene were identified in all three children. Patient MS was homozygous for a missense mutation (662 C>T) causing a Pro198Leu amino acid substitution; patient BH was homozygous for a single base deletion (511 delT) causing a frame shift and a premature stop codon in exon 5; and patient RM was homozygous for a missense mutation (385 C>T) causing a Leu106Phe amino acid substitution. All had liver biopsies showing a giant cell hepatitis; in two, prominent extramedullary haemopoiesis was noted. MS was cured by treatment with chenodeoxycholic acid and cholic acid; BH showed initial improvement but then deteriorated and required liver transplantation; RM had advanced liver disease when treatment was started and also progressed to liver failure. CONCLUSIONS: Analysis of blood samples for SRD5B1 mutations can be used to diagnose genetic 5beta-reductase deficiency and distinguish these patients from those who have another cause of 3-oxo-delta(4) bile aciduria, for example, severe liver damage. Patients with genetic 5beta-reductase deficiency may respond well to treatment with chenodeoxycholic acid and cholic acid if liver disease is not too advanced.


Assuntos
Análise Mutacional de DNA , Hepatite/genética , Falência Hepática/genética , Oxirredutases/genética , Ácido Quenodesoxicólico/sangue , Ácido Quenodesoxicólico/urina , Ácido Cólico/sangue , Ácido Cólico/urina , Feminino , Deleção de Genes , Hepatite/metabolismo , Hepatite/patologia , Humanos , Recém-Nascido , Fígado/patologia , Falência Hepática/metabolismo , Falência Hepática/patologia , Masculino , Mutação de Sentido Incorreto , Oxirredutases/deficiência , Reação em Cadeia da Polimerase/métodos , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...