Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1139361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056498

RESUMO

Introduction: Fungal foliar diseases can severely affect the productivity of the peanut crop worldwide. Late leaf spot is the most frequent disease and a major problem of the crop in Brazil and many other tropical countries. Only partial resistance to fungal diseases has been found in cultivated peanut, but high resistances have been described on the secondary gene pool. Methods: To overcome the known compatibility barriers for the use of wild species in peanut breeding programs, we used an induced allotetraploid (Arachis stenosperma × A. magna)4x, as a donor parent, in a successive backcrossing scheme with the high-yielding Brazilian cultivar IAC OL 4. We used microsatellite markers associated with late leaf spot and rust resistance for foreground selection and high-throughput SNP genotyping for background selection. Results: With these tools, we developed agronomically adapted lines with high cultivated genome recovery, high-yield potential, and wild chromosome segments from both A. stenosperma and A. magna conferring high resistance to late leaf spot and rust. These segments include the four previously identified as having QTLs (quantitative trait loci) for resistance to both diseases, which could be confirmed here, and at least four additional QTLs identified by using mapping populations on four generations. Discussion: The introgression germplasm developed here will extend the useful genetic diversity of the primary gene pool by providing novel wild resistance genes against these two destructive peanut diseases.

2.
Genet Mol Biol ; 43(2): e20190099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32525505

RESUMO

Peanut (Arachis hypogaea L.) is a tetraploid species with an A and B genome, while the majority of wild Arachis species are diploid with distinct genomes. In pre-breeding programs, one way to introgress interesting wild genes into peanut is by producing amphidiploids. This study aimed at the hybridization between distinct amphidiploids and their characterization, to combine high crossability with peanut, observed in some amphidiploids, with high pest and disease resistances observed in others. These new hybrids were called complex hybrids. Four amphidiploids previously obtained were crossed at four different combinations, and the derived complex hybrids were crossed with four peanut cultivars. Morphological, reproductive, chromosome complement, molecular markers for hybrid identification, phytopatological, and entomological characterizations were performed on the complex hybrids. All cross combinations resulted in complex hybrids. One complete complement of each diploid progenitor was confirmed in each hybrid. Plants of six distinct hybrid combinations were obtained between the complex hybrids and peanut. Based on morphological characterization, differences among progenies from distinct cross combinations were observed. Complex hybrids were considered more resistant to all diseases and pests than peanut cultivars. The simultaneous introgression of genes from four wild Arachis species into peanut was possible through the development of complex hybrids.

3.
Genet Mol Biol ; 36(3): 364-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24130444

RESUMO

The cytogenetic characterization of Arachis species is useful for assessing the genomes present in this genus, for establishing the relationship among their representatives and for understanding the variability in the available germplasm. In this study, we used fluorescence in situ hybridization (FISH) to examine the distribution patterns of heterochromatin and rDNA genes in 12 Brazilian accessions of five species of the taxonomic section Arachis. The heterochromatic pattern varied considerably among the species: complements with centromeric bands in all of the chromosomes (A. hoehnei) and complements completely devoid of heterochromatin (A. gregoryi, A. magna) were observed. The number of 45S rDNA loci ranged from two (A. gregoryi) to eight (A. glandulifera), while the number of 5S rDNA loci was more conserved and varied from two (in most species) to four (A. hoehnei). In some species one pair of 5S rDNA loci was observed adjacent to 45S rDNA loci. The chromosomal markers revealed polymorphism in the three species with more than one accession (A. gregoryi, A. magna and A. valida) that were tested. The previous genome assignment for each of the species studied was confirmed, except for A. hoehnei. The intraspecific variability observed here suggests that an exhaustive cytogenetic and taxonomic analysis is still needed for some Arachis species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...