Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 41(1): 011711, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24387503

RESUMO

PURPOSE: The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an (192)Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate (192)Ir brachytherapy source. METHODS: Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an (192)Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an (192)Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the (192)Ir source. RESULTS: The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard (137)Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the (192)Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a maximum uncertainty of 11% (k = 1) found at 1 cm from the source. Radial dose values in water were compared against published results of the American Association of Physicists in Medicine and the European Society for Radiotherapy and Oncology and no significant differences (maximum value of 3.1%) were found within uncertainties except for one position at 9 cm (5.8%). At this location the background contribution relative to the TLD signal is relatively small and an unexpected experimental fluctuation in the background estimate may have caused such a large discrepancy. CONCLUSIONS: This paper shows that reliable measurements with TLDs in complex energy spectra require a study of the detector dose response with the radiation quality and specific calibration methodologies which model accurately the experimental conditions where the detectors will be used. The authors have developed and studied a method with highly sensitive TLDs and contributed to its validation by comparison with results from the literature. This methodology can be used to provide direct estimates of the absorbed dose rate in water for irradiations with HDR (192)Ir brachytherapy sources.


Assuntos
Braquiterapia , Cobre , Radioisótopos de Irídio/uso terapêutico , Compostos de Lítio , Magnésio , Fósforo , Dosimetria Termoluminescente/métodos , Água , Calibragem , Humanos , Método de Monte Carlo , Dosimetria Termoluminescente/instrumentação , Incerteza
2.
Phys Med Biol ; 51(22): 5951-65, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17068376

RESUMO

Different measurements of depth-dose curves and dose profiles were performed in heterogeneous phantoms and compared to dose distributions calculated by a Monte Carlo code. These heterogeneous phantoms consisted of lung and/or bone heterogeneities. Irradiations and simulations were carried out for an 18 MeV electron beam and a 12 MV photon beam. Depth-dose curves were measured with Fricke dosimeters and with plane and cylindrical ionization chambers. Dose profiles were measured with a small cylindrical ionization chamber at different depths. The LINAC was modelled using the PENELOPE code and phase space files were used as input data for the calculations of the dose distributions in every simulation. The detectors (Fricke dosimeters and ionization chambers) were not modelled in the geometry. There is generally a good agreement between the measurements and PENELOPE. Some discrepancies exist, near interfaces, between the ionization chamber and PENELOPE due to the attenuation of the lower energy electrons by the wall of the ionization chamber.


Assuntos
Método de Monte Carlo , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Software , Carga Corporal (Radioterapia) , Elétrons/uso terapêutico , Humanos , Imagens de Fantasmas , Fótons/uso terapêutico , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
3.
Radiat Prot Dosimetry ; 96(1-3): 241-4, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11586740

RESUMO

Individual neutron dosimetry represents one of the current difficulties in the field of radiological protection of workers. Since March 1999, the regulatory requirements in France for active (i.e. operational) dosimetry have been those of ICRP Publication 60, applicable from May 2000, necessitating the introduction of a new generation of neutron dosemeters. Over the last few years, the Institute for Nuclear Safety and Protection has been studying an individual electronic dosemeter for neutrons based on a semiconducting detector, capable of meeting the specifications laid down by a neutron dosimetry work group, including members from all the main players in the French nuclear industry. In 1998, the IPSN began transferring technology to the Saphymo company which, by the end of 2001, will be marketing Saphydose-n, the first individual dosemeter for neutrons which complies with IEC Standard 1323. This dosemeter is of compact design and can assess the individual dose equivalent Hp(10) in mixed neutron and gamma radiation fields. It wil be usable in any nuclear facility without prior knowledge of the average neutron spectrum or of the neutron-gamma ratio. It will be possible to connect the Saphydose-n dosemeter to any of the existing gamma deserter terminals to read the dose data and recharge the batteries.


Assuntos
Contaminação Radioativa do Ar/análise , Nêutrons , Exposição Ocupacional/análise , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/normas , Eletrônica , Desenho de Equipamento , União Europeia , França , Humanos , Doses de Radiação , Proteção Radiológica/métodos , Sensibilidade e Especificidade
4.
Radiat Prot Dosimetry ; 96(1-3): 265-8, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11586745

RESUMO

Over the last few years IPSN has been developing a small, tissue equivalent proportional counter (TEPC) with multielement geometry for personal radiation protection monitoring. This paper presents the last prototype, which is insensitive to microphony, and the experimental results. Numerical modelling results using CERN codes are partly presented and allow an understanding of the nuclear and electrostatic physics involved in a TEPC.


Assuntos
Nêutrons , Exposição Ocupacional/análise , Radiometria/instrumentação , Radiometria/normas , Qualidade de Produtos para o Consumidor , Desenho de Equipamento , França , Humanos , Doses de Radiação , Monitoramento de Radiação/métodos , Proteção Radiológica/normas , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...