Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Legal Med ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693332

RESUMO

Injury mechanisms of the lumbar spine under dynamic loading are dependent on spine curvature and anatomical variation. Impact simulation with finite element (FE) models can assist the reconstruction and prediction of injuries. The objective of this study was to determine which level of individualization of a baseline FE lumbar spine model is necessary to replicate experimental responses and fracture locations in a dynamic experiment.Experimental X-rays from 26 dynamic drop tower tests were used to create three configurations of a lumbar spine model (T12 to L5): baseline, with aligned vertebrae (positioned), and with aligned and morphed vertebrae (morphed). Each model was simulated with the corresponding loading and boundary conditions from dynamic lumbar spine experiments. Force, moment, and kinematic responses were compared to the experimental data. Cosine similarity was computed to assess how well simulation responses match the experimental data. The pressure distribution within the vertebrae was used to compare fracture risk and fracture location between the different models.The positioned models replicated the injured spinal level and the fracture patterns quite well, though the morphed models provided slightly more accuracy. However, for impact reconstruction or injury prediction, the authors recommend pure positioning for whole-body models, as the gain in accuracy was relatively small, while the morphing modifications of the model require considerably higher efforts. These results improve the understanding of the application of human body models to investigate lumbar injury mechanisms with FE models.

2.
Ann Biomed Eng ; 52(4): 816-831, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374520

RESUMO

For traumatic lumbar spine injuries, the mechanisms and influence of anthropometrical variation are not yet fully understood under dynamic loading. Our objective was to evaluate whether geometrically subject-specific explicit finite element (FE) lumbar spine models based on state-of-the-art clinical CT data combined with general material properties from the literature could replicate the experimental responses and the fracture locations via a dynamic drop tower-test setup. The experimental CT datasets from a dynamic drop tower-test setup were used to create anatomical details of four lumbar spine models (T12 to L5). The soft tissues from THUMS v4.1 were integrated by morphing. Each model was simulated with the corresponding loading and boundary conditions from the dynamic lumbar spine tests that produced differing injuries and injury locations. The simulations resulted in force, moment, and kinematic responses that effectively matched the experimental data. The pressure distribution within the models was used to compare the fracture occurrence and location. The spinal levels that sustained vertebral body fracture in the experiment showed higher simulation pressure values in the anterior elements than those in the levels that did not fracture in the reference experiments. Similarly, the spinal levels that sustained posterior element fracture in the experiments showed higher simulation pressure values in the vertebral posterior structures compared to those in the levels that did not sustain fracture. Our study showed that the incorporation of the spinal geometry and orientation could be used to replicate the fracture type and location under dynamic loading. Our results provided an understanding of the lumbar injury mechanisms and knowledge on the load thresholds that could be used for injury prediction with explicit FE lumbar spine models.


Assuntos
Fraturas da Coluna Vertebral , Traumatismos da Coluna Vertebral , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/lesões , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fenômenos Mecânicos , Fenômenos Biomecânicos , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...