Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 593(12): 1336-1350, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31102259

RESUMO

The insecticidal effects of ω-hexatoxin-Hv1a, κ-hexatoxin-Hv1c and ω/κ-hexatoxin-Hv1h are currently attributed to action at calcium and potassium channels. By characterizing the binding of these toxins to neuronal membranes, we show that they have more potent effects as positive allosteric modulators (PAMs) of insect nicotinic acetylcholine receptors (nAChRs), consistent with their neuroexcitatory toxicology. Alanine scanning analysis of ω-hexatoxin-Hv1a reveals a structure-activity relationship for binding that mirrors that for insecticidal activity. Spinosyn A does not compete with ω-hexatoxin-Hv-1a for binding, and we show that these two PAMs have distinct pharmacology of binding indicating that they act at different receptor populations. These toxins represent valuable tools for the characterization of insect nAChRs and for the development of more selective agrochemicals.


Assuntos
Inseticidas/toxicidade , Receptores Nicotínicos/efeitos dos fármacos , Venenos de Aranha/toxicidade , Regulação Alostérica , Animais , Humanos , Inseticidas/química , Venenos de Aranha/química , Relação Estrutura-Atividade
2.
Pest Manag Sci ; 69(5): 607-19, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23112103

RESUMO

BACKGROUND: The precise mode of action of sulfoxaflor, a new nicotinic acetylcholine receptor-modulating insecticide, is unclear. A detailed understanding of the mode of action, especially in relation to the neonicotinoids, is essential for recommending effective pest management practices. RESULTS: Radiolabel binding experiments using a tritiated analogue of sulfoxaflor ([(3) H]-methyl-SFX) performed on membranes from Myzus persicae demonstrate that sulfoxaflor interacts specifically with the high-affinity imidacloprid binding site present in a subpopulation of the total nAChR pool. In competition studies, imidacloprid-like neonicotinoids displace [(3) H]-methyl-SFX at pM concentrations. The effects of sulfoxaflor on the exposed aphid nervous system in situ are analogous to those of imidacloprid and nitenpyram, and finally the high-affinity sulfoxaflor binding site is absent in a Myzus persicae strain (clone FRC) possessing a single amino acid point mutation (R81T) in the ß-nAChR, a region critical for neonicotinoid interaction. CONCLUSION: The nicotinic acetylcholine receptor pharmacological profile of sulfoxaflor in aphids is consistent with that of imidacloprid. Additionally, the insecticidal activity of sulfoxaflor and the current commercialised neonicotinoids is affected by the point mutation in FRC Myzus persicae. Therefore, it is suggested that sulfoxalfor be considered a neonicotinoid, and that this be taken into account when recommending insecticide rotation partnering for effective resistance management programmes.


Assuntos
Inseticidas/toxicidade , Piridinas/toxicidade , Receptores Nicotínicos/química , Compostos de Enxofre/toxicidade , Animais , Afídeos , Ligação Competitiva , Resistência a Inseticidas , Piridinas/síntese química , Compostos de Enxofre/síntese química , Trítio
3.
PLoS One ; 7(5): e34712, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563457

RESUMO

The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines) encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.


Assuntos
Acetilcolina/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Insetos/metabolismo , Inseticidas/metabolismo , Compostos de Espiro/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Acetilcolina/farmacocinética , Sequência de Aminoácidos , Animais , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Transporte Biológico/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Insetos/crescimento & desenvolvimento , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Células PC12 , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Homologia de Sequência de Aminoácidos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética
4.
BMC Neurosci ; 12: 51, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21627790

RESUMO

BACKGROUND: Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. RESULTS: Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid) to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR). Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpß1) genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR ß1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T). CONCLUSION: Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also provides further validation of exisiting models of neonicotinoid binding and selectivity for insect nAChRs.


Assuntos
Afídeos/genética , Colinérgicos/farmacologia , Imidazóis/farmacologia , Inseticidas/farmacologia , Nitrocompostos/farmacologia , Receptores Nicotínicos/genética , Animais , Afídeos/metabolismo , Resistência a Inseticidas/genética , Mutação , Neonicotinoides , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...