Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 23(11): 101714, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33196031

RESUMO

Microbial communities display behavioral changes in response to variable environmental conditions. In some bacteria, motility increases as a function of cell density, allowing for population dispersal before the onset of nutrient scarcity. Utilizing automated particle tracking, we now report on a population-dependent increase in the swimming speeds of the photosynthetic unicellular eukaryotes Chlamydomonas reinhardtii and C. moewussi. Our findings confirm that this acceleration in swimming speed arises as a function of culture density, rather than with age and/or nutrient availability. Furthermore, this phenomenon depends on the synthesis and detection of a low-molecular-weight compound which can be transferred between cultures and stimulates comparable effects across both species, supporting the existence of a conserved phenomenon, not unlike bacterial quorum sensing, among members of this genus. The potential expansion of density-dependent phenomena to a new group of unicellular eukaryotes provides important insight into how microbial populations evolve and regulate "social" behaviors.

2.
Front Plant Sci ; 10: 1616, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32076424

RESUMO

The green algae Chlamydomonas reinhardtii is a model system for motility in unicellular organisms. Photo-, gravi-, and chemotaxis have previously been associated with C. reinhardtii, and observing the extent of these responses within a population of cells is crucial for refining our understanding of how this organism responds to changing environmental conditions. However, manually tracking and modeling a statistically viable number of samples of these microorganisms is an unreasonable task. We hypothesized that automated particle tracking systems are now sufficiently advanced to effectively characterize such populations. Here, we present an automated method to observe C. reinhardtii motility that allows us to identify individual cells as well as global information on direction, speed, and size. Nutrient availability effects on wild-type C. reinhardtii swimming speeds, as well as changes in speed and directionality in response to light, were characterized using this method. We also provide for the first time the swimming speeds of several motility-deficient mutant lines. While our present effort is focused around the unicellular green algae, C. reinhardtii, we confirm the general utility of this approach using Chlamydomonas moewusii, another member of this genus which contains over 300 species. Our work provides new tools for evaluating and modeling motility in this model organism and establishes the methodology for conducting similar experiments on other unicellular microorganisms.

3.
Front Plant Sci ; 9: 235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623083

RESUMO

Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...