Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(9): 1594-1604, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36999247

RESUMO

Microbial communities in marine sediments are highly diverse, yet the processes that give rise to this complexity are unclear. It has been proposed that benthic microbial communities must be continuously re-seeded from the water column because dispersal within the sediment is severely limited. Previous studies consistently report that the composition of the microbial community gradually changes with sediment depth. However, the relative contributions of the processes that underlie these compositional gradients have not been determined, and it is unknown whether microbial dispersal is indeed too slow to outpace burial. Here, we applied ecological statistical frameworks to 16S rRNA gene amplicon-based community composition data from Atacama Trench sediments to investigate the links between biogeochemistry, burial, and microbial community assembly processes. We confirm that dispersal limitation affects microbial communities and find that gradual changes in community composition are driven by selective pressures that change abruptly across the discrete boundaries between redox zones rather than along continuous biogeochemical gradients, while selective pressures are uniform within each zone. The gradual changes in community composition over centimetres of depth within a zone hence reflects a decades-long response to the abruptly changing selective pressures.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Sedimentos Geológicos/química , RNA Ribossômico 16S/genética , Filogenia , Microbiota/genética , Oxirredução
2.
Methods Mol Biol ; 2569: 41-74, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36083443

RESUMO

Molecular clock analyses are challenging for microbial phylogenies, due to a lack of fossil calibrations that can reliably provide absolute time constraints. An alternative source of temporal constraints for microbial groups is provided by the inheritance of proteins that are specific for the utilization of eukaryote-derived substrates, which have often been dispersed across the Tree of Life via horizontal gene transfer. In particular, animal, algal, and plant-derived substrates are often produced by groups with more precisely known divergence times, providing an older-bound on their availability within microbial environments. Therefore, these ages can serve as "standard candles" for dating microbial groups across the Tree of Life, expanding the reach of informative molecular clock investigations. Here, we formally develop the concept of substrate standard candles and describe how they can be propagated and applied using both microbial species trees and individual gene family phylogenies. We also provide detailed evaluations of several candidate standard candles and discuss their suitability in light of their often complex evolutionary and metabolic histories.


Assuntos
Evolução Biológica , Fósseis , Animais , Teorema de Bayes , Células Eucarióticas , Evolução Molecular , Filogenia , Plantas/genética
3.
ISME Commun ; 2(1): 43, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37938726

RESUMO

Cyanobacteria and extracellular polymeric substances (EPS) in peritidal pustular microbial mats have a two-billion-year-old fossil record. To understand the composition, production, degradation, and potential role of EPS in modern analogous communities, we sampled pustular mats from Shark Bay, Australia and analyzed their EPS matrix. Biochemical and microscopic analyses identified sulfated organic compounds as major components of mat EPS. Sulfur was more abundant in the unmineralized regions with cyanobacteria and less prevalent in areas that contained fewer cyanobacteria and more carbonate precipitates. Sequencing and assembly of the pustular mat sample resulted in 83 high-quality metagenome-assembled genomes (MAGs). Metagenomic analyses confirmed cyanobacteria as the primary sources of these sulfated polysaccharides. Genes encoding for sulfatases, glycosyl hydrolases, and other enzymes with predicted roles in the degradation of sulfated polysaccharides were detected in the MAGs of numerous clades including Bacteroidetes, Chloroflexi, Hydrogenedentes, Myxococcota, Verrucomicrobia, and Planctomycetes. Measurable sulfatase activity in pustular mats and fresh cyanobacterial EPS confirmed the role of sulfatases in the degradation of sulfated EPS. These findings suggest that the synthesis, modification, and degradation of sulfated polysaccharides influence microbial interactions, carbon cycling, and biomineralization processes within peritidal pustular microbial mats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...