Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(13): 6343-6352, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916300

RESUMO

Microphones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical (MEMS) microphones and allow further miniaturization of the device. Here, we present a laser vibrometry study of the acoustic response of suspended multilayer graphene membranes for microphone applications. We address performance parameters relevant for acoustic sensing, including mechanical sensitivity, limit of detection and nonlinear distortion, and discuss the trade-offs and limitations in the design of graphene microphones. We demonstrate superior mechanical sensitivities of the graphene membranes, reaching more than 2 orders of magnitude higher compliances than commercial MEMS devices, and report a limit of detection as low as 15 dBSPL, which is 10-15 dB lower than that featured by current MEMS microphones.

2.
Photochem Photobiol Sci ; 18(8): 2023-2030, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290525

RESUMO

Rising demands for renewable energy sources have led to the development of dye sensitized solar cells. It is a challenge to find a good and low cost sensitizer, which has a low environmental impact. In this work, we conducted spectroscopic and electrochemical experiments, as well as quantum-chemical calculations of the natural pigment hypericin, in order to provide insight into its sensitizing efficiency. To this end, three identical cells were made and characterized. Although this pigment exhibited good adsorption onto a semiconductor surface, a high molar absorption coefficient (43 700 L mol-1 cm-1) and favorable alignment of energy levels and provided a long lifetime of electrons (17.8 ms) in the TiO2 photoanode, it was found that the efficiency of hypericin-sensitized solar cells was very low, only 0.0245%. We suggest that this inefficiency originated from a low injection of electrons into the conduction band of TiO2. This conclusion is supported by the density functional theory calculations which revealed a low electron density in the anchoring groups of electronically excited hypericin. The results of this work could be valuable not only in the photovoltaic aspect, but also for application of hypericin in medicine in photodynamic therapy.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Elétrons , Perileno/análogos & derivados , Energia Solar , Antracenos , Teoria da Densidade Funcional , Perileno/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...