Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1991, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222409

RESUMO

Emerging multidrug-resistant bacteria are a challenge for modern medicine, but how these pathogens are so successful is not fully understood. Robust antibacterial vaccines have prevented and reduced resistance suggesting a pivotal role for immunity in deterring antibiotic resistance. Here, we show the increased prevalence of Klebsiella pneumoniae lipopolysaccharide O2 serotype strains in all major drug resistance groups correlating with a paucity of anti-O2 antibodies in human B cell repertoires. We identify human monoclonal antibodies to O-antigens that are highly protective in mouse models of infection, even against heavily encapsulated strains. These antibodies, including a rare anti-O2 specific antibody, synergistically protect against drug-resistant strains in adjunctive therapy with meropenem, a standard-of-care antibiotic, confirming the importance of immune assistance in antibiotic therapy. These findings support an antibody-based immunotherapeutic strategy even for highly resistant K. pneumoniae infections, and underscore the effect humoral immunity has on evolving drug resistance.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/fisiologia , Antígenos O/imunologia , Animais , Antibacterianos/uso terapêutico , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Linhagem Celular , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/imunologia , Humanos , Imunidade Humoral , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Klebsiella pneumoniae/efeitos dos fármacos , Meropeném , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Sorogrupo , Taxa de Sobrevida , Tienamicinas/uso terapêutico
2.
JCI Insight ; 2(9)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28469079

RESUMO

Initial promising results with immune sera guided early human mAb approaches against Gram-negative sepsis to an LPS neutralization mechanism, but these efforts failed in human clinical trials. Emergence of multidrug resistance has renewed interest in pathogen-specific mAbs. We utilized a pair of antibodies targeting Klebsiella pneumoniae LPS, one that both neutralizes LPS/TLR4 signaling and mediates opsonophagocytic killing (OPK) (54H7) and one that only promotes OPK (KPE33), to better understand the contribution of each mechanism to mAb protection in an acutely lethal pneumonia model. Passive immunization 24 hours prior to infection with KPE33 protected against lethal infection significantly better than 54H7, while delivery of either mAb 1 hour after infection resulted in similar levels of protection. These data suggest that early neutralization of LPS-induced signaling limits protection afforded by these mAbs. LPS neutralization prevented increases in the numbers of γδT cells, a major producer of the antimicrobial cytokine IL-17A, the contribution of which was confirmed using il17a-knockout mice. We conclude that targeting LPS for OPK without LPS signaling neutralization has potential to combat Gram-negative infection by engaging host immune defenses, rather than inhibiting beneficial innate immune pathways.

3.
MAbs ; 9(3): 393-403, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28102754

RESUMO

Antibodies carry out a plethora of functions through their crystallizable fragment (Fc) regions, which can be naturally tuned by the adoption of several isotypes and post-translational modifications. Protein engineering enables further Fc function modulations through modifications of the interactions between the Fc and its functional partners, including FcγR, FcRn, complement complex, and additions of auxiliary functional units. Due to the many functions embedded within the confinement of an Fc, a suitable balance must be maintained for a therapeutic antibody to be effective and safe. The outcome of any Fc engineering depends on the interplay among all the effector molecules involved. In this report, we assessed the effects of Fc multiplication (or tandem Fc) on antibody functions. Using IgG1 as a test case, we found that, depending on the specifically designed linker, Fc multiplication led to differentially folded, stable molecules with unique pharmacokinetic profiles. Interestingly, the variants with 3 copies of Fc improved in vitro opsonophagocytic killing activity and displayed significantly improved protective efficacies in a Klebsiella pneumoniae mouse therapeutic model despite faster clearance compared with its IgG1 counterpart. There was no adverse effect observed or pro-inflammatory cytokine release when the Fc variants were administered to animals. We further elucidated that enhanced binding to various effector molecules by IgG-3Fc created a "sink" leading to the rapid clearance of the 3Fc variants, and identified the increased FcRn binding as one strategy to facilitate "sink" escape. These findings reveal new opportunities for novel Fc engineering to further expand our abilities to manipulate and improve antibody therapeutics.


Assuntos
Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Engenharia de Proteínas/métodos , Animais , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae , Camundongos , Camundongos Endogâmicos C57BL
4.
PLoS One ; 12(1): e0170529, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107434

RESUMO

Antibody therapy against antibiotics resistant Klebsiella pneumoniae infections represents a promising strategy, the success of which depends critically on the ability to identify appropriate antibody targets. Using a target-agnostic strategy, we recently discovered MrkA as a potential antibody target and vaccine antigen. Interestingly, the anti-MrkA monoclonal antibodies isolated through phage display and hybridoma platforms all recognize an overlapping epitope, which opens up important questions including whether monoclonal antibodies targeting different MrkA epitopes can be generated and if they possess different protective profiles. In this study we generated four anti-MrkA antibodies targeting different epitopes through phage library panning against recombinant MrkA protein. These anti-MrkA antibodies elicited strong in vitro and in vivo protections against a multi-drug resistant Klebsiella pneumoniae strain. Furthermore, mutational and epitope analysis suggest that the two cysteine residues may play essential roles in maintaining a MrkA structure that is highly compacted and exposes limited antibody binding/neutralizing epitopes. These results suggest the need for further in-depth understandings of the structure of MrkA, the role of MrkA in the pathogenesis of Klebsiella pneumoniae and the protective mechanism adopted by anti-MrkA antibodies to fully explore the potential of MrkA as an efficient therapeutic target and vaccine antigen.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Klebsiella pneumoniae/imunologia , Animais , Farmacorresistência Bacteriana Múltipla/imunologia , Epitopos/imunologia , Citometria de Fluxo , Interferometria , Infecções por Klebsiella/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes
5.
J Infect Dis ; 213(11): 1800-8, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26768253

RESUMO

The increasing incidence of Klebsiella pneumoniae infections refractory to treatment with current broad-spectrum antibiotic classes warrants the exploration of alternative approaches, such as antibody therapy and/or vaccines, for prevention and treatment. However, the lack of validated targets shared by spectrums of clinical strains poses a significant challenge. We adopted a target-agnostic approach to identify protective antibodies against K. pneumoniae Several monoclonal antibodies were isolated from phage display and hybridoma platforms by functional screening for opsonophagocytic killing activity. We further identified their common target antigen to be MrkA, a major protein in the type III fimbriae complex, and showed that these serotype-independent anti-MrkA antibodies reduced biofilm formation in vitro and conferred protection in multiple murine pneumonia models. Importantly, mice immunized with purified MrkA proteins also showed reduced bacterial burden following K. pneumoniae challenge. Taken together, these results support MrkA as a promising target for K. pneumoniae antibody therapeutics and vaccines.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Proteínas de Fímbrias/imunologia , Klebsiella pneumoniae/imunologia , Animais , Especificidade de Anticorpos , Vacinas Bacterianas/imunologia , Biofilmes , Citotoxicidade Imunológica , Humanos , Hibridomas , Infecções por Klebsiella/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Fagocitose , Mucosa Respiratória/microbiologia
6.
Biol Blood Marrow Transplant ; 13(9): 1022-30, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17697964

RESUMO

Mixed chimerism in the T cell compartment (MCT) after reduced-intensity stem cell transplantation (RIST) may influence immune repopulation with alloreactive donor T cells. We examined effects of host T cell numbers on donor T cell engraftment and recovery and on acute graft-versus-host disease (aGVHD) in a relatively homogeneous patient population with respect to residual host T cells through quantified immune depletion prior to RIST and to donor T cells by setting the allograft T cell dose of 1x10(5) CD3+ cells/kg. In this setting, 2 patterns of early donor T cell engraftment could be distinguished by day +42: (1) early and complete donor chimerism in the T cell compartment (FDCT) and (2) persistent MCT. FDCT was associated with lower residual host CD8+ T cell counts prior to transplant and aGVHD. With persistent MCT, subsequent development of aGVHD could be predicted by the direction of change in T cell donor chimerism after donor lymphocyte infusion, and no aGVHD occurred until FDCT was established. MCT did not affect recovery of donor T cell counts. These observations suggest that the relative number and alloreactivity of donor and host T cells are more important than the absolute allograft T cell dose in determining donor engraftment and aGVHD after RIST.


Assuntos
Sobrevivência de Enxerto/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Transfusão de Linfócitos/métodos , Linfócitos T/fisiologia , Adulto , Idoso , Neoplasias da Mama/terapia , Complexo CD3/análise , Linfócitos T CD8-Positivos/citologia , Feminino , Neoplasias Hematológicas/terapia , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Linfócitos T/citologia , Quimeras de Transplante , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...