Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 20(16): 1658-1668, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29169266

RESUMO

The study presents an experimental verification of Wagner et al.'s relationship in microscale and proposes a modification of this relationship. For this purpose, 11 cubic specimens were microcomputed tomography scanned and mechanically tested with the displacement full-field measurements using a digital image correlation system. Then, numerical simulations of the compression tests were performed using a finite elements method. The Young's modulus distributions assigned to the finite elements models were calculated using both of Wagner et al.'s relationships: original and modified. Comparison of the experimental and numerical results indicated the accuracy of numerical solutions for both relationships.


Assuntos
Densidade Óssea , Módulo de Elasticidade , Cabeça do Fêmur/fisiologia , Análise de Elementos Finitos , Humanos , Modelos Teóricos , Análise Numérica Assistida por Computador , Microtomografia por Raio-X
2.
J Mech Behav Biomed Mater ; 36: 120-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837330

RESUMO

According to the literature, there are many mathematical relationships between density of the trabecular bone and mechanical properties obtained in macro-scale testing. In micro-scale, the measurements provide only the ranges of Young׳s modulus of trabeculae, but there are no experimentally tested relationships allowing the calculation of the distribution of Young׳s modulus of trabeculae within these experimental ranges. This study examined the applicability of relationships between bone density and mechanical properties obtained in macro-scale testing for the calculation of Young׳s modulus distribution in micro-scale. Twelve cubic specimens from eleven femoral heads were cut out and micro-computed tomography (micro-CT) scanned. A mechanical compression test and Digital Image Correlation (DIC) measurements were performed to obtain the experimental displacement and strain full-field evaluation for each specimen. Five relationships between bone density and Young׳s modulus were selected for the test; those were given by Carter and Hayes (1977), Ciarelli et al. (2000), Kaneko et al. (2004), Keller (1994) for the human femur, and Li and Aspden, 1997. Using these relationships, five separate finite element (FE) models were prepared, with different distribution of Young׳s modulus of trabeculae for each specimen. In total, 60 FE analyses were carried out. The obtained displacement and strain full-field measurements from numerical calculations and experiment were compared. The results indicate that the highest accuracy of the numerical calculation was obtained for the Ciarelli et al. (2000) relationship, where the relative error was 17.87% for displacements and 50.94 % for strains. Therefore, the application of the Ciarelli et al. (2000) relationship in the microscale linear FE analysis is possible, but mainly to determine bone displacement.


Assuntos
Absorciometria de Fóton/métodos , Algoritmos , Densidade Óssea/fisiologia , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/fisiologia , Modelos Biológicos , Idoso , Força Compressiva/fisiologia , Simulação por Computador , Módulo de Elasticidade/fisiologia , Dureza/fisiologia , Humanos , Técnicas In Vitro , Estresse Mecânico , Resistência à Tração/fisiologia , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...