Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38764088

RESUMO

The wastewater treatment processes are associated with the emission of microbial aerosols, including enteropathogenic bacteria. Their presence in this work environment poses a real threat to the health of employees, both through the possibility of direct inhalation of the contaminated air and indirectly through the pollution of all types of surfaces with such bioaerosol particles. This study aimed to investigate the prevalence of enteropathogenic bacteria in the air, on surfaces, and in wastewater samples collected in four wastewater treatment plants (WWTPs). The effectiveness of conventional culture-biochemical, as well as spectrometric and molecular methods for the rapid detection of enteropathogenic bacteria at workstations related to particular stages of wastewater processing, was also evaluated. Bioaerosol, surface swab, and influent and effluent samples were collected from wastewater plants employing mechanical-biological treatment technologies. The air samples were collected using MAS-100 NT impactor placed at a height of 1.5 m above the floor or ground, simulating aspiration from the human breathing zone. Surface samples were collected with sterile swabs from different surfaces (valves, handles, handrails, and coveyor belts) at workplaces. The raw influent and treated effluent wastewater samples were aseptically collected using sterile bottles. The identification of bacterial entheropathogens was simultaneously conducted using a culture-based method supplemented with biochemical (API) tests, mass-spectrometry (MALDI TOF MS), and molecular (multiplex real-time PCR) methods. This study confirmed the common presence of bacterial pathogens (including enteropathogenic and enterotoxigenic Escherichia coli, Salmonella spp., Campylobacter spp., and Yersinia enterocolitica) in all air, surface, and wastewater samples at studied workplaces. Higher concentrations of enteropathogenic bacteria were observed in the air and on surfaces at workplaces where treatment processes were not hermetized. The results of this study underline that identification of enteropathogenic bacteria in WWTPs is of great importance for the correct risk assessment at workplaces. From the analytical point of view, the control of enteropathogenic bacterial air and surface pollution using rapid multiplex-PCR method should be routinely performed as a part of hygienic quality assessment in WWTPs.

2.
Ann Agric Environ Med ; 30(4): 623-633, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38153064

RESUMO

INTRODUCTION AND OBJECTIVE: Poultry house employees spend a significant part of their work shift being exposed to airborne particulate pollutants. The aim of this study was to assess their exposure at different stages of chicken production cycle, based on quantification of pro-inflammatory mediators (IL-1ß, IL-6, IL-8, and TNFα) in nasal lavage (NAL) samples. MATERIAL AND METHODS: The concentrations of airborne dust at 3 different stages of the production cycle (i.e. empty poultry house, with 7- and 42-day-old chickens) were stationary measured using Grimm spectrometer, as well as CIS and Button samplers. The dust collected by the latter 2 samplers was analyzed for endotoxin and (1→3)-ß-D-glucan content. NAL samples were collected from employees after their work shift to determine the pro-inflammatory mediator levels. RESULTS: The maximum particulate aerosol, endotoxin, and (1→3)-ß-D-glucan concentrations at workplaces reached the levels of 4.12 mg/m3, 45.21 ng/m3, and 56.54 ng/m3, respectively. The IL-1ß, IL-6, and IL-8 concentrations in NAL samples ranged between 0.62-18.12 pg/mL, <0.70-25.37 pg/mL, and <3.50-259.5 pg/mL, respectively. All TNFα levels were below 4 pg/mL. There were no significant differences between these cytokine concentrations in NAL samples collected at different stages of chicken breeding in either 'winter' or 'summer' seasons. CONCLUSIONS: Inhalation stimulation with poultry dust containing endotoxins and (1→3)-ß-D-glucans resulted in the production of pro-inflammatory mediators, which proves the course of immunological processes in the exposed employees that may lead to adverse effects. The use of nasal lavage fluid in the control of such exposure confirms that NAL analysis is a reliable laboratory tool for assessing the impact of poultry dust on exposed farm workers.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Animais , Poeira/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Interleucina-8 , Aves Domésticas , Fator de Necrose Tumoral alfa , Interleucina-6 , Mediadores da Inflamação/análise , Galinhas , Endotoxinas/análise , Glucanos/análise , Exposição por Inalação/análise
3.
Ann Agric Environ Med ; 30(3): 432-454, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37772519

RESUMO

INTRODUCTION AND OBJECTIVE: Intensive poultry farming is usually associated with massive exposure to organic dust, which is largely composed of microbiological origin particulates. The aim of the study is to assess occupational and environmental exposures to airborne bacteria, fungi, and Marek's disease virus emitted by a poultry house. MATERIAL AND METHODS: The concentrations of airborne microorganisms in a poultry house and its vicinity (250-500 m) at 3 different stages of the production cycle (i.e. empty poultry house, with 7-day-old and 42-day-old chickens) were stationary measured using Andersen and MAS impactors, as well as Coriolis and BioSampler impingers. The collected microbiota was taxonomically identified using molecular and biochemical techniques to characterize occupational exposure and its spatial dissemination. RESULTS: Although Marek's disease virus was not present in the tested air samples, the appearance of reared chickens in the poultry house resulted in an increase in airborne bacterial and fungal concentrations up to levels of 1.26 × 108 CFU/m3 and 3.77 × 104 CFU/m3, respectively. These pollutants spread around through the ventilation system, but their concentrations significantly decreased at a distance of 500 m from the chicken coop. A part of the identified microbiota was pathogens that were successfully isolated from the air by all 4 tested samplers. CONCLUSIONS: The poultry house employees were exposed to high concentrations of airborne microorganisms, including pathogens that may lead to adverse health outcomes. To protect them, highly efficient hygienic and technical measures regarding the poultry house interior and its ventilation, respectively, should be introduced to prevent both unwanted pollution and subsequent emission of microbial contaminants during intensive chicken breeding.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35897354

RESUMO

The aim of this pilot study was to assess the time-related changes in viable nasal bacteria concentrations among waste-incineration plant (WIP) workers compared to a group of office building (OB) workers outside the plant. In total, 20 volunteers participated in the study, including 14 WIP and 6 OB workers. WIP workers were divided into two sub-groups: supervisory staff (SVS) and maintenance and repair workers (MRW). Nasal swabs were collected before and after the morning work shift. Airborne bacteria were sampled with a six-stage impactor to assess the bioaerosol size distribution. The analysis showed that a significant, almost three-fold increase in nasal bacterial concentration was found only among WIP workers, and this referred mainly to anaerobic species. The load of anaerobic bacteria at the beginning of work was 12,988 CFU/mL, and after work shift 36,979 CFU/mL (p < 0.01). Significant increases in microbial concentrations was found only in the MRW subgroup, among non-smoking workers only. The results showed increased bacterial concentration in WIP nasal samples for as many as 12 bacterial species, including, e.g., Streptococcus constellatus, Peptostreptococcus spp., E. coli, and P. mirabilis. These preliminary data confirmed that the nasal swab method was helpful for assessment of the workers' real-time exposure to airborne bacteria.


Assuntos
Incineração , Exposição Ocupacional , Aerossóis/análise , Microbiologia do Ar , Bactérias , Monitoramento Ambiental/métodos , Escherichia coli , Humanos , Exposição Ocupacional/análise , Projetos Piloto
5.
Sci Rep ; 12(1): 4517, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296727

RESUMO

This study aimed to qualitatively and quantitatively assess the prevalence of the most common respiratory and gastrointestinal viruses in the air, surface swab, and influent/effluent samples collected in wastewater treatment plants (WWTPs). Application of qPCR/RT-qPCR (quantitative polymerase chain reaction/reverse-transcription quantitative polymerase chain reaction) assays combined with PMA (propidium monoazide) dye pretreatment allowed detecting the potentially infectious and disintegrated viral particles in collected samples. In the air at workplaces in WWTPs, the most frequent isolation with the highest concentrations (reaching up to 103 gc/m3 of potentially infectious intact viral particles) were observed in case of adenoviruses (AdVs) and rotaviruses (RoVs), followed by noroviruses (NoVs). Viruses were significantly more often detected in the air samples collected with Coriolis µ impinger, than with MAS-100NT impactor. The temperature negatively (Spearman correlation: -1 < R < 0; p < 0.05), while RH (relative humidity) positively (0 < R < 1; p < 0.05) affected airborne concentrations of potentially infectious viral particles. In turn, the predominant viruses on studied surfaces were RoVs and noroviruses GII (NoV GII) with concentrations of potentially infectious virions up to 104 gc/100 cm2. In the cases of SARS-CoV-2 and presumptive SARS-CoV-2 or other coronaviruses, their concentrations reached up to 103 gc/100 cm2. The contamination level of steel surfaces in WWTPs was similar to this on plastic ones. This study revealed that the qualitative and quantitative characteristics of respiratory and gastrointestinal viruses at workplaces in WWTPs is important for proper exposure assessment and needs to be included in risk management in occupational environment with high abundance of microbial pollutants derived from wastewater.


Assuntos
COVID-19 , Vírus , Purificação da Água , Humanos , SARS-CoV-2 , Vírus/genética , Local de Trabalho
6.
Sci Total Environ ; 791: 148287, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139489

RESUMO

In many countries, the management of household waste has recently changed with an increased focus upon waste sorting resulting in lower collection frequency for some waste fractions. A consequence of this is the potential for increased growth of microorganisms in the waste before collection, which can lead to an increased exposure via inhalation for waste collection workers. Through a review of the literature, we aimed to evaluate risks caused by waste collecting workers' exposure to bioaerosols and to illuminate potential measures to reduce the exposure. Across countries and waste types, median exposure to fungi, bacteria, and endotoxin were typically around 104 colony forming units (cfu)/m3, 104 cfu/m3, and 10 EU/m3, respectively. However, some studies found 10-20+ times higher or lower median exposure levels. It was not clear how different types of waste influence the occupational exposure levels. Factors such as high loading, ventilation in and cleaning of drivers' cabs, increased collection frequency, waste in sealed sacks, and use of hand sanitizer reduce exposure. Incidences of gastrointestinal problems, irritation of the eye and skin and symptoms of organic dust toxic syndrome have been reported in workers engaged in waste collection. Several studies reported a correlation between bioaerosol exposure level and reduced lung function as either a short or a long term effect; exposure to fungi and endotoxin is often associated with an inflammatory response in exposed workers. However, a better understanding of the effect of specific microbial species on health outcomes is needed to proceed to more reliable risk assessments. Due to the increasing recycling effort and to the effects of global warming, exposure to biological agents in this working sector is expected to increase. Therefore, it is important to look ahead and plan future measures as well as improve methods to prevent long and short-term health effects.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Bactérias , Poeira/análise , Endotoxinas/análise , Fungos , Humanos , Exposição Ocupacional/análise
7.
J Air Waste Manag Assoc ; 71(10): 1292-1302, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34029169

RESUMO

The study focused on exposure assessment to bacterial aerosols and organic dust in waste sorting plant. Samples were collected at different workplaces of waste sorting cycle i.e.: waste press, reloading area, loading of conveyor belt, sorting cabin, sorting hall, and control room. A quantitative analysis of aerobic and anaerobic bacteria was supplemented by qualitative analysis of anaerobic biota with the use of culture-based methods and biochemical tests. In addition, inhalable dust concentrations were also evaluated. To confirm the presence of Clostridium genus, the PCR reaction with specific primers (Chis150f and ClostIr) was performed. The average concentration of total bacteria in waste sorting plant was 4347 CFU m-3 (SD = 2439), of which 66% were anaerobic strains (2852 CFU m-3; SD = 2127). It was found that about 24% of anaerobic bacteria belonged to Clostridium genus (682 CFU m-3; SD = 633). The highest contamination with anaerobic bacteria was observed near the waste reloading plant (3740 CFU m-3), and the lowest in the control room (850 CFU m-3). The average concentration of inhalable dust in the waste sorting plant was 0.81 mg m-3 (SD = 0.59). The correlation analysis showed that the presence of anaerobic bacteria, including clostridia was significantly determined by the microclimate parameters. Qualitative analysis showed the presence of 16 anaerobic species belonging to 9 genera, of which Actinomyces, Clostridium, and Gemella were present at all workplaces. The molecular analysis confirmed the presence of Clostridium genus in both bioaerosol and settled dust samples.Implications: The study showed that anaerobic bacteria should be taken into account as an important component of this microbiota when assessing the exposure of waste sorting workers to biological agents. However, future studies should investigate more precisely how the composition of sorted waste as well as the season can affect the diversity of anaerobic bacteria in this working environment. More attention should be paid to regular cleaning of equipment surfaces in the plant, as deposited organic dust is an important reservoir of anaerobic bacteria, including those of a potentially pathogenic nature.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Aerossóis/análise , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Bactérias Anaeróbias , Poeira/análise , Monitoramento Ambiental , Fungos , Humanos , Exposição Ocupacional/análise
8.
Ann Agric Environ Med ; 28(1): 61-71, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33775069

RESUMO

INTRODUCTION: Money is the most common item with which we have daily contact. Circulated banknotes and coins can become microbiologically contaminated and act as both a source and a means of spreading such pollutants. MATERIAL AND METHODS: The study was carried out in three money sorting facilities in Poland. Bioaerosol samples were collected using a 6-stage Andersen impactor, and microorganisms deposited on tabletop surfaces were sampled using the swab method. Bacterial and fungal concentrations were calculated and all isolated species were taxonomically identified. RESULTS: The study confirmed that means of payment are active sources of microbial emission in money sorting facilities. The bioaerosol concentrations did not exceed the threshold limit values proposed for this type of office premises. It confirms that ventilation systems in these facilities worked efficiently, protecting them from the migration of microbial contaminants present in both indoor and outdoor (atmospheric) background air. On the other hand, the average concentrations of bacteria and fungi on tabletop surfaces in banknote and coin sorting rooms were above the proposed purity levels for indoor surfaces and should be treated as microbiologically contaminated. Microbiota isolated from the air and surfaces were very diverse and among those strains were bacterial and fungal pathogens that can pose a health threat to exposed individuals. CONCLUSIONS: The results showed that employees in money sorting facilities were exposed to microorganisms that may contribute to the development of adverse health outcomes. To protect them, highly efficient hygienic measures should be introduced in this working environment, to prevent both unwanted pollution and subsequent secondary emission of microbial contaminants from sorted means of payment and tabletop surfaces.


Assuntos
Bactérias/isolamento & purificação , Contaminação de Equipamentos/estatística & dados numéricos , Fungos/isolamento & purificação , Microbiologia do Ar , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Humanos , Polônia , Local de Trabalho
9.
J Occup Environ Hyg ; 17(6): 312-323, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32255403

RESUMO

We aimed to assess the occurrence of bovine viruses (bovine leukemia virus-BLV and bovine adenovirus-BAdV) at workplaces in traditional dairies and to evaluate the potential role of airborne and surface contamination in spreading of these viruses derived from raw milk. The total amount of 122 samples-including 37 air (bioaerosol), 40 surface, and 45 milk samples-were checked for the presence of BLV and BAdV genomes using RT-qPCR/qPCR method. The study showed that the viruses were present in 7 air (among them 71.4% were BLV-positive and 28.6% were BAdV-positive), 14 surface (among them 85.7% were BLV-positive and 14.3% were BAdV-positive), and 34 milk (all were BLV-positive only) samples. Statistical analysis revealed that both the air and surfaces in studied occupational environment were more frequently contaminated with BLV than with BAdV (Chi-square test: p = 0.002, Fisher's Exact test: p = 0.002). Kruskal-Wallis tests showed significant differences in BLV genome concentrations in the air (p = 0.045) as well as in BLV and BAdV genome concentrations on surfaces (p = 0.005 and p = 0.040, respectively) between studied processing areas. In units of genome copies (gc) per area, the highest concentrations of BLV and BAdV genomes in the air (9.8 × 101 ± 1.14 × 102 gc/m3 and 5.4 × 101 ± 9.1 × 101 gc/m3, respectively) and on surfaces (9.83 × 102 ± 7.41 × 102 gc/100cm2 and 2.30 × 102 ± 3.8 × 102 gc/100cm2, respectively) were observed in milk reception area. The air and surfaces of pre-production zones were also significantly more contaminated with BAdV genomes compared to production areas (Mann-Whitney test: p = 0.039 and p = 0.029, respectively). This study showed that dairy workers may be exposed to bovine viruses through the inhalation of bioaerosols and contact with contaminated surfaces. To reduce the probability of virus transmission from the raw milk to humans, efficient surface cleaning procedures degrading viral particles should be introduced and the use of personal protection equipment, especially within pre-production zones, should be required. As the raw milk may be a source of bovine viruses, the development of strategies for both the control and eradication of BLV and BAdV among cattle seems to be also urgently needed.


Assuntos
Adenoviridae/isolamento & purificação , Indústria de Laticínios , Vírus da Leucemia Bovina/isolamento & purificação , Leite/virologia , Adenoviridae/genética , Aerossóis , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Animais , Bovinos , Feminino , Genoma Viral , Humanos , Vírus da Leucemia Bovina/genética , Masculino , Exposição Ocupacional/análise , Prevalência
10.
Sci Total Environ ; 697: 134018, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31479905

RESUMO

Occupational exposure to wood dust and bioaerosols may lead to numerous respiratory tract diseases. We aimed to assess a degree of workplace contamination with dust, bacteria, fungi, endotoxins, and (1 → 3)-ß-D-glucans released into the air during wood processing in pellet production facilities and to check against this background the usefulness of nasal lavage (NAL) as analytical tool for assessment of combined workers' exposure to airborne dust and microbiological contaminants. In 10 pellet plants, the particulate (wood dust) aerosol concentrations were determined by using Grimm aerosol spectrometer and CIS filter sampler. The collected CIS samples were subsequently used to evaluate endotoxin and (1 → 3)-ß-D-glucan concentrations. Simultaneously with particulate aerosol, bioaerosol samples were collected by using 6-stage Andersen and single-stage MAS impactors. Bacterial and fungal aerosol concentrations were calculated and all isolated microorganisms were taxonomically identified. NAL fluid samples were collected from workers exposed to studied aerosols and the concentrations of proinflammatory mediators (IL-1ß, IL-6, IL-8, and TNFα) and cytological image of nasal mucosa (expressed as cell counts) were established. The dynamics of production activities resulted in wide range of observed wood dust, microorganism, endotoxin and (1 → 3)-ß-D-glucan concentrations reaching periodically extremely high values up to 65 mg m-3, 19,320 CFU m-3, 215 ng m-3 and 1525 ng m-3, respectively. Environmental stress caused by exposure to particulate and microbial aerosols stimulated immune response among workers of pellet production facilities. Correlation analysis revealed that interleukin levels and the number of cells in NAL were significantly affected by both wood dust and bioaerosol concentrations. As nasal mucosa serves as the primary barrier against inhaled pollutants, NAL seems a reliable analytical material to assess work-related adverse respiratory health outcomes derived from such exposure.


Assuntos
Aerossóis/análise , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Lavagem Nasal , Exposição Ocupacional/análise , Microbiologia do Ar , Bactérias , Endotoxinas , Fungos , Humanos , Madeira , Local de Trabalho
11.
Ann Agric Environ Med ; 26(2): 236-241, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31232052

RESUMO

INTRODUCTION: To assess the across-shift changes of cytokine concentrations in nasal lavage (NAL) samples were collected from workers exposed to bacterial cell wall components present in organic dust in three different occupational environments. MATERIAL AND METHODS: The study was conducted in 38 employees including 10 workers from a municipal waste sorting plant (WSP), 20 from a sewage treatment plant (STP) and 8 from an office building (OB), who were established as a reference group, not exposed to organic dust. Interleukins 1ß (IL-1ß), 6 (IL-6), 8 (IL-8) and tumour necrosis factor alpha (TNF-α) were examined in NAL before and after work shift on Wednesdays. Bioaerosol exposure was determined by personal measurements and analysed for organic dust, endotoxins (END) and peptidoglycans (PGN). RESULTS: The analysis included the results for IL-8 only, because for the other cytokines their concentrations in 80% of cases were below the detection level. The most polluted were the workplaces in WSP with average concentrations of organic dust - 3.47 mg/m3, END - 96.31 ng/m3 and PGN - 571.88 ng/m3. The results of IL-8 showed a significant difference between the studied groups after the work shift (p=0.007). Among WSP workers concentrations of IL-8 increased also significantly (p=0.015) during the work shift. Multivariate analysis showed that organic dust and END were the factors that in the most distinct way (p<0.001) influenced changes of IL-8 levels in NAL. CONCLUSIONS: Each alteration in the composition of bioaerosols will probably determine the changes in the mechanisms responsible for both formation and modulation of inflammatory reactions in exposed workers.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Bactérias/imunologia , Parede Celular/imunologia , Líquido da Lavagem Nasal/imunologia , Exposição Ocupacional/efeitos adversos , Adulto , Aerossóis/efeitos adversos , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Poeira/imunologia , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Interleucina-1beta/imunologia , Interleucina-8/imunologia , Pessoa de Meia-Idade , Lavagem Nasal , Exposição Ocupacional/análise , Esgotos/efeitos adversos , Esgotos/análise , Jornada de Trabalho em Turnos , Fator de Necrose Tumoral alfa/imunologia
12.
Med Pr ; 70(1): 99-105, 2019 Feb 28.
Artigo em Polonês | MEDLINE | ID: mdl-30653196

RESUMO

Solid waste storage in specially designated areas - landfills - has been the basic method of municipal solid waste disposal management for many years. However, thermal treatment is the currently preferred method of solid waste disposal. Hygienic assessment of working conditions in municipal waste incineration plants is hindered due to the variability and complexity of pollutants emitted during the combustion process. For many years studies describing this problem have focused mainly on chemical pollution inside the plants as well as emitted into the atmosphere. Available data indicates the presence of organic dust at workplaces in the range 0.1-14 mg/m3. It has been proven that it is a carrier of a wide spectrum of microorganisms, including bacteria, fungi and both mesophilic and thermophilic actinomycetes as well as adenoviruses and torque teno virus (TTV). In the air, at workplaces, bacterial endotoxins have also been found in concentrations reaching even 50 000 EU/m3, which may significantly affect the occurrence of pro-inflammatory reactions in the lungs as well as toxic pneumonitis. Biological agents should be taken into account in the occupational risk assessment for harmful agents present in this environment, and an in-depth characterization of exposure and health effects resulting from contact with these agents should be continued to an even greater extent than before. Med Pr. 2019;70(1):99-105.


Assuntos
Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Eliminação de Resíduos , Bactérias , Poeira/análise , Fungos , Humanos
13.
Sci Total Environ ; 660: 288-296, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30640097

RESUMO

Landfills collecting substantial amounts of municipal waste support multiplication of different bacteria mainly due to organic matter contained in the deposited materials. With time, they may become active emission sources of these microorganisms. Taking into account both occupational and public health and safety, there is an indisputable necessity to monitor the level of air contamination caused by both bacterial cells and their components (e.g., endotoxins). In this study, the concentrations of total viable bacteria (TVB), and Gram-negative bacteria (GNB), as well as their particle size distributions and concentrations of GNB endotoxins were assessed at various locations within the landfill area. The concentrations of TVB and GNB in the air samples changed depending on the season, location (i.e. active sector versus surroundings) and landfill activity level (i.e. exploitation or standstill periods). Higher abundances of endotoxins were found during the standstill period, and they were significantly correlated with organic dust concentrations. The microbial particle size distribution was associated with the landfill operational state, being predominated by fine below 4.7 µm and coarse fractions above 7.0 µm within the active sector during exploitation and standstill periods, respectively. These results supported by a spatial distribution of bacterial aerosol indicate a clear impact of operated landfill on microbiological air quality within the occupied location and nearby areas. Considering health and safety of landfill workers and neighboring residents, who can be exposed to airborne microbial pollutants, repeated bioaerosol monitoring need to be established. It should facilitate both a special planning within the landfill area and undertaking preventive actions in its near and distant surroundings.

14.
Med Pr ; 69(3): 269-280, 2018 May 22.
Artigo em Polonês | MEDLINE | ID: mdl-29565046

RESUMO

BACKGROUND: In recent years, the number of people suffering from diseases caused by fungi has been increasing. However, knowledge of the biodiversity of fungal pathogens in the work environment is still insufficient. The aim of this work was to evaluate the exposure to fungi being disseminated in the air of workplaces contaminated with organic dust of plant and animal origin. MATERIAL AND METHODS: Bioaerosol samples were collected at 3 occupational settings (poultry farm, biomass burning power plant and wastewater treatment plant) using button samplers. Quantitative and qualitative analysis of fungal aerosol was conducted by employing macro- and microscopic methods. Selected strains were then studied by polymerase chain reaction (PCR) using srodointernal transcribed spacers (ITS): ITS1-ITS2, ITS3-ITS4 and ITS1-ITS4 primer pairs. RESULTS: Average concentrations of fungal aerosol at workplaces ranged 1.2×102-2.1×106 cfu/m3. The highest fungal concentrations were recorded in the poultry farm, while the lowest were noted at the wastewater treatment plant. Aspergillus fumigatus was a predominant component of the mycobiota in the power plant and wastewater treatment plant. Almost 100% identification agreement of this pathogen between the traditional and molecular method was noted. CONCLUSIONS: The fungal concentrations in poultry farms exceeded the Polish proposal for the threshold limit value (5×104 cfu/m3). The results of the study demonstrate a high compatibility of A. fumigatus' identification using the traditional and molecular methods. Taking into account the fact, that a long term exposure to A. fumigatus conidia at workplaces may result in numerous health complaints, the use of proper protective equipment by workers must be a standard procedure. Med Pr 2018;69(3):269-280.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Fungos/isolamento & purificação , Exposição por Inalação/análise , Poluição do Ar em Ambientes Fechados/análise , Contagem de Colônia Microbiana , Poeira/análise , Humanos , Polônia , Local de Trabalho
15.
Int Arch Occup Environ Health ; 91(5): 571-579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29594341

RESUMO

PURPOSE: The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). METHODS: Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. RESULTS: The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 104 CFU/mL (GSD = 85.4) and in sludge-1.42 × 106 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 103 CFU/m3) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. CONCLUSIONS: Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bactérias Anaeróbias/isolamento & purificação , Exposição Ocupacional/análise , Águas Residuárias/microbiologia , Microbiologia do Ar , Poluentes Atmosféricos/análise , Poluição do Ar , Análise de Variância , Clostridium/genética , Clostridium/isolamento & purificação , Bases de Dados de Ácidos Nucleicos , Monitoramento Ambiental , Humanos , Polônia , RNA Ribossômico 16S
16.
Aerobiologia (Bologna) ; 33(4): 481-491, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167599

RESUMO

The aim of the study was to assess the levels of inhalable dust, endotoxins and (1-3)-ß-d-glucans as agents harmful to the respiratory tract of workers of municipal waste sorting plants and interaction between these agents based on the measurements taken in two plants with different processing capacities. The study was conducted in summer season in two waste sorting plants (WSPs) differing in processing capacity. Samples of bioaerosol for inhalable dust (gravimetric method), endotoxins (LAL test in kinetic, chromogenic version) and (1-3)-ß-d-glucans (Glucatell test in kinetic version) were collected from 42 sorting workers using individual aspirators with glass fiber filters during the work shift. Average geometric concentrations (geometric standard deviation; min-max) of inhalable dust, endotoxins and (1-3)-ß-d-glucans were: WSP1: 1.7 mg m-3 (2.2; 0.6-6.9 mg m-3); 15.9 ng m-3 (2.1; 5.4-78.9 ng m-3), 55.1 ng m-3 (1.8; 20.7-188.6 ng m-3) and WSP2: 0.8 mg m-3 (2.2; 0.2-3.8 mg m-3), 9.8 ng m-3 (2.4; 1.6-29.7 ng m-3), 45.0 ng m-3 (3.2, 5.7-212.9 ng m-3), respectively. A significantly higher concentration of inhalable dust was recorded in WSP1 with bigger processing capacity compared to WSP2 (less processing capacity). Significant (p < 0.05) and very high correlations (Spearman rank R > 0.7) were found between the concentrations of all analyzed harmful agents. Processing capacity of waste sorting plants differentially affects the concentrations of inhalable dust, whereas concentrations of endotoxins and glucans are less clearly affected. This suggests that relative concentrations of endotoxin and glucan are depending on the waste sorting capacity.

17.
Int Arch Occup Environ Health ; 90(3): 285-295, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28124138

RESUMO

PURPOSE: The aim of this study was to characterize the ways of spreading of the most common bacterial species isolated from workers as well as from the air and raw materials at the workplaces in power plant utilizing biomass sources. To monitor microbial transmission and identify the source of contamination in the working environment, a combination of molecular and biochemical methods was applied. METHODS: The study was carried out at workplaces in power plant utilizes biomass as a main fuel source. At each of the studied workplaces, bioaerosol particles were collected on sterile Teflon filters using personal conical inhalable samplers (CIS), and biomass samples (straw pellets and briquettes, corn briquettes, sunflower pellets and wood chips) were directly taken from their storage places. Simultaneously with that, the swab samples from the hands of ten workers and their used respiratory masks (of FFP2 class) were also collected after the work shift to evaluate individual workers' microbial contamination. In all collected samples, total bacterial concentrations were assessed and the most common microbial isolates were identified to the species level using both biochemical (API tests) and molecular polymerase chain reaction (PCR), followed by random amplification of polymorphic DNA (RAPD) typing methods. RESULTS: The mean concentrations of culturable bacteria in the air and in biomass samples at the studied workplaces were high, i.e. 1.2 × 106cfu/m3 and 3.8 × 104cfu/g, respectively. The number of bacteria in the swab and mask samples also reached a high level of 1.4 × 104 cfu/ml and 1.9 × 103 cfu/cm2, respectively. Among the most frequently isolated microorganisms from all types of samples were Gram-positive bacteria of the genus Bacillus and Staphylococcus xylosus. 37 bacterial strains belonging to the genus Bacillus (B. licheniformis 8, B. pumilus 15 and B. subtilis 4) and Staphylococcus (10) were genotyped by the RAPD-PCR method. Based on RAPD-PCR analyses, the genomic similarity among 19 Bacillus strains isolated from biomass, air, protective mask and hand samples as well as 6 S. xylosus strains isolated from air, mask and hand samples exceeded 80%. CONCLUSION: This study demonstrated that biomass is the primary source of bacteria at power plant workplaces. These results also revealed that biomass-associated bacteria can be easily transferred to workers' hands and mask during their routine activities. To improve health protection at the workplaces, adequate training courses on hand hygiene and how to use and remove respiratory masks correctly for workers should be introduced as a key element of the prevention strategy. From the occupational point of view, the PCR-based methods seem to be an efficient tool for a fast and precise typing of bacterial strains isolated from different sources in the occupational environment. Such methods may help to implement appropriate prophylactic procedures and minimize transmission of infectious agents at workplaces.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Bactérias/isolamento & purificação , Exposição Ocupacional/análise , Centrais Elétricas/estatística & dados numéricos , Microbiologia do Ar , Bactérias/classificação , Biomassa , Contagem de Colônia Microbiana , Monitoramento Ambiental/métodos , Mãos/microbiologia , Humanos , Polônia , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico , Dispositivos de Proteção Respiratória/microbiologia , Local de Trabalho/estatística & dados numéricos
18.
Int J Occup Med Environ Health ; 29(3): 427-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26988882

RESUMO

OBJECTIVES: The aim of this study was to assess exposure to airborne endotoxins and peptidoglycans (PGs) as well as possibility of using PGs as a surrogate measure of bacterial exposure in workplaces in a metal processing plant. MATERIAL AND METHODS: Personal dosimetry (N = 11) was used to obtain data on concentrations of viable bacteria, total number of bioaerosol particles, endotoxins and peptidoglycans. To investigate the size distributions of aerosol particles responsible for transport of endotoxins and PGs, air samples (N = 5) were additionally collected using the 8-stage cascade impactor. Endotoxins and PGs were assayed with the Limulus amebocyte lysate (LAL) test and a kinetic version of the silkworm larvae plasma (SLP) test, respectively. RESULTS: Median concentrations of airborne PGs (14.6 ng/m3), endotoxins (0.2 ng/m3), viable bacteria (1.16×103 CFU/m3) and the total number of bioaerosol particles (1.81×106 cells/m3) were determined. Qualitative analysis revealed presence of 19 bacterial species belonging to 14 genera. The calculations showed strong, significant correlations (p < 0.05) between endotoxins, viable bacteria (r = 0.75) and the total number of bioaerosol particle concentrations (r = 0.76) as well as between PGs and the total number of bioaerosol particle concentrations (r = 0.72). Size distribution analysis showed that the highest concentrations of bacterial aerosols occurred in the range of 2.1-3.3 µm. In the case of endotoxins, an increase of concentrations in 2 ranges of aerodynamic diameters: 1.1-3.3 µm and 5.8-9 µm was shown. For PGs there was a visible gradual increase of their concentrations in the range 2.1-9 µm. CONCLUSIONS: Peptidoglycans can be treated as a supporting indicator of bacterial contamination in metal processing plants, particularly when an assessment of an immunotoxic potential of microbiological hazards needs to be performed. However, to be extrapolated to other occupational and non-occupational environments, the obtained results require a further verification.


Assuntos
Microbiologia do Ar , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Metalurgia , Exposição Ocupacional/análise , Peptidoglicano/análise , Aerossóis , Poluentes Ocupacionais do Ar/análise , Endotoxinas/análise , Tamanho da Partícula
19.
Int J Occup Med Environ Health ; 29(2): 255-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26670355

RESUMO

OBJECTIVES: To date, the scientific source materials usually focus on microbial contamination of the museum or library collections themselves, while the exposure of persons who professionally deal with this type of objects in cultural heritage conservation laboratories is ignored. MATERIAL AND METHODS: The study was carried out in 9 naturally ventilated conservation laboratories with no history of water damage. Viable (understood as culturable) bioaerosol stationary samples were collected in both outdoor and indoor environments using 6-stage Andersen impactor. Simultaneously, stationary and personal indoor bioaerosol measurements were carried out using both Gesamtstaubprobenahme an der Person (GSP) and Button filter samplers. These measurements were complemented by evaluation of microbial content in the dust settled on conserved works of art. All impactor, filter, and settled dust samples were quantitatively examined to obtain viable and total concentrations of bacteria and fungi. All isolated microbial strains were taxonomically identified. RESULTS: At workplaces, the concentrations of viable microorganisms in air were below 2000 cfu/m3 and accounted for not more than 5.5% of total microbiota. The study showed that quantitative assessment of viable bioaerosol can be made with an Andersen impactor as well as by using Button and GSP filter samplers, irrespective of whether they are applied for personal or stationary measurements. Compared to the impactor, however, the use of filter samplers for microbial contamination monitoring substantially limits the scope of qualitative information which can be obtained. Size distribution analysis revealed that the largest "load" of microorganisms can penetrate into the respiratory tract between the trachea and terminal bronchi, and thereby may be responsible for allergic inflammations in exposed workers. CONCLUSIONS: The precise assessment of microbial hazards in conservation laboratories should comprise control of both viable and total particle counts. The hermetization of such workplaces and control of relative humidity should be implemented and maintained to assure proper hygienic conditions.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Microbiota , Doenças Profissionais/epidemiologia , Exposição Ocupacional/análise , Local de Trabalho/normas , Humanos , Incidência , Doenças Profissionais/diagnóstico , Exposição Ocupacional/efeitos adversos , Polônia/epidemiologia
20.
Med Pr ; 66(6): 779-91, 2015.
Artigo em Polonês | MEDLINE | ID: mdl-26674165

RESUMO

BACKGROUND: Cleaning services are carried out in almost all sectors and branches of industry. Due to the above, cleaners are exposed to various harmful biological agents, depending on the tasks performed and the commercial sector involved. The aim of this study was to assess the exposure of cleaning workers to biological agents based on quantitative and qualitative characteristics of airborne microflora. MATERIAL AND METHODS: A six-stage Andersen sampler was used to collect bioaerosols during the cleaning activities in different workplaces, including schools, offices, car services, healthy services and shops. Standard Petri dishes filled with blood trypticase soy agar and malt extract agar were used for bacterial and fungal sampling, respectively. RESULTS: The bioaerosol concentration values obtained during testing of selected workposts of cleaners were lower than the Polish recommended threshold limit values for microorganisms concentrations in public service. The most prevalent bacterial species in studied places were Gram-positive cocci (mainly of genera Micrococcus, Staphylococcus) and endospore-forming Gram-positive rods (mainly of genera Bacillus). Among the most common fungal species were those from genera Penicillium and Aspergillus. The size distribution analysis revealed that bioaerosols present in the air of workposts at shops, schools and car services may be responsible for nose and eye mucosa irritation and allergic reactions in the form of asthma or allergic inflammation in the cleaning workers. CONCLUSIONS: The study shows that occupational activities of cleaning workers are associated with exposure to airborne biological agents classified into risk groups, 1. and 2., according to their level of infection risk, posing respiratory hazard.


Assuntos
Aerossóis/análise , Microbiologia do Ar/normas , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Fungos/isolamento & purificação , Exposição Ocupacional/análise , Aerossóis/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Contagem de Colônia Microbiana , Exposição Ambiental/análise , Humanos , Exposição Ocupacional/efeitos adversos , Tamanho da Partícula , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...