Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 11(5): 054112, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29085523

RESUMO

Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

2.
Sci Rep ; 7(1): 5164, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701737

RESUMO

Hematopoietic ontogeny is characterized by distinct primitive and definitive erythroid lineages. Definitive erythroblasts mature and enucleate extravascularly and form a unique membrane skeleton, composed of spectrin, 4.1R-complex, and ankyrinR-complex components, to survive the vicissitudes of the adult circulation. However, little is known about the formation and composition of the membrane skeleton in primitive erythroblasts, which progressively mature while circulating in the embryonic bloodstream. We found that primary primitive erythroblasts express the major membrane skeleton genes present in similarly staged definitive erythroblasts, suggesting that the composition and formation of this membrane network is conserved in maturing primitive and definitive erythroblasts despite their respective intravascular and extravascular locations. Membrane deformability and stability of primitive erythroblasts, assayed by microfluidic studies and fluorescence imaged microdeformation, respectively, significantly increase prior to enucleation. These functional changes coincide with protein 4.1 R isoform switching and protein 4.1R-null primitive erythroblasts fail to establish normal membrane stability and deformability. We conclude that maturing primitive erythroblasts initially navigate the embryonic vasculature prior to establishing a deformable cytoskeleton, which is ultimately formed prior to enucleation. Formation of an erythroid-specific, protein 4.1R-dependent membrane skeleton is an important feature not only of definitive, but also of primitive, erythropoiesis in mammals.


Assuntos
Diferenciação Celular , Eritroblastos/metabolismo , Eritropoese , Proteínas dos Microfilamentos/metabolismo , Processamento Alternativo , Animais , Diferenciação Celular/genética , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Eritroblastos/citologia , Membrana Eritrocítica/metabolismo , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...