Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(13): 11260-11268, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37469508

RESUMO

An approach is established for fabricating high-strength and high-stiffness composite laminates with continuous carbon nanotube (CNT) yarns for scaled-up mechanical tests and potential aerospace structure applications. Continuous CNT yarns with up to 80% degree of nanotube alignment and a unique self-assembled graphitic CNT packing result in their specific tensile strengths of 1.77 ± 0.07 N/tex and an apparent specific modulus of 92.6 ± 3.2 N/tex. Unidirectional CNT yarn reinforced composite laminates with a CNT concentration of greater than 80 wt % and minimal microscale voids are fabricated using filament winding and aerospace-grade resin matrices. A specific tensile strength of up to 1.71 GPa/(g cm-3) and specific modulus of 256 GPa/(g cm-3) are realized; the specific modulus exceeds current state-of-the-art unidirectional carbon fiber composite laminates. The specific modulus of the laminates is 2.76 times greater than the specific modulus of the constituent CNT yarns, a phenomenon not observed in carbon fiber reinforced composites. The results demonstrate an effective approach for fabricating high-strength CNT yarns into composites for applications that require specific tensile modulus properties that are significantly beyond state-of-the-art carbon fiber composites and potentially open an unexplored performance region in the Ashby chart for composite material applications.

2.
Rev Sci Instrum ; 93(2): 023704, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232135

RESUMO

Beamline 11.3.1 at the Advanced Light Source is a tender/hard (6-17 keV) x-ray bend magnet beamline recently re-purposed with a new full-field, nanoscale transmission x-ray microscope. The microscope is designed to image composite and porous materials possessing a submicrometer structure and compositional heterogeneity that determine materials' performance and geologic behavior. The theoretical and achieved resolutions are 55 and <100 nm, respectively. The microscope is used in tandem with a <25 nm eccentricity rotation stage for high-resolution volume imaging using nanoscale computed tomography. The system also features a novel bipolar illumination condenser for the illumination of an ∼100 µm spot of interest on the sample, followed by a phase-type zone plate magnifying objective of ∼52 µm field of view and a phase detection ring. The zone plate serves as the system objective and magnifies the sample with projection onto an indirect x-ray detection system, consisting of a polished single crystal CsI(Tl) scintillator and a range of high-quality Plan Fluorite visible light objectives. The objectives project the final visible light image onto a water-cooled CMOS 2048 × 2048-pixel2 detector. Here, we will discuss the salient features of this instrument and describe early results from imaging the internal three-dimensional microstructure and nanostructure of target materials, including fiber-reinforced composites and geomaterials.

3.
IEEE Trans Vis Comput Graph ; 26(1): 140-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442997

RESUMO

Metallic open-cell foams are promising structural materials with applications in multifunctional systems such as biomedical implants, energy absorbers in impact, noise mitigation, and batteries. There is a high demand for means to understand and correlate the design space of material performance metrics to the material structure in terms of attributes such as density, ligament and node properties, void sizes, and alignments. Currently, X-ray Computed Tomography (CT) scans of these materials are segmented either manually or with skeletonization approaches that may not accurately model the variety of shapes present in nodes and ligaments, especially irregularities that arise from manufacturing, image artifacts, or deterioration due to compression. In this paper, we present a new workflow for analysis of open-cell foams that combines a new density measurement to identify nodal structures, and topological approaches to identify ligament structures between them. Additionally, we provide automated measurement of foam properties. We demonstrate stable extraction of features and time-tracking in an image sequence of a foam being compressed. Our approach allows researchers to study larger and more complex foams than could previously be segmented only manually, and enables the high-throughput analysis needed to predict future foam performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...