Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Antimicrob Agents Chemother ; : e0053524, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007560

RESUMO

Antimicrobial resistance (AMR) is a major global health threat estimated to have caused the deaths of 1.27 million people in 2019, which is more than HIV/AIDS and malaria deaths combined. AMR also has significant consequences on the global economy. If not properly addressed, AMR could immensely impact the world's economy, further increasing the poverty burden in low- and middle-income countries. To mitigate the risk of a post-antibiotic society, where the ability to effectively treat common bacterial infections is being severely threatened, it is necessary to establish a continuous supply of new and novel antibacterial medicines. However, there are gaps in the current pipeline that will prove difficult to address, given the time required to develop new agents. To understand the status of upstream antibiotic development and the challenges faced by drug developers in the early development stage, the World Health Organization has regularly assessed the preclinical and clinical antibacterial development pipeline. The review identifies potential new classes of antibiotics or novel mechanisms of action that can better address resistant bacterial strains. This proactive approach is necessary to stay ahead of evolving resistance patterns and to support the availability of effective treatment options. This review examines the trends in preclinical development and attempts to identify gaps and potential opportunities to overcome the numerous hurdles in the early stages of the antibacterial research and development space.

2.
J Orthop Surg Res ; 18(1): 351, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170132

RESUMO

BACKGROUND: Estimating the contribution of endplate oedema known as Modic changes to lower back pain (LBP) has been the subject of multiple observational studies and reviews, some of which conclude that the evidence for an association of Modic change with LBP is uncertain while others demonstrate a clear link. The clinical trials demonstrating the benefit of basivertebral nerve ablation, a therapeutic intervention, in a tightly defined homogenous patient group with chronic LBP and Modic changes type 1 or type 2, provides further evidence for the contribution of Modic changes to LBP and shows that in these subjects, nerve ablation substantially reduces pain and disability. These interventional studies provide direct evidence that Modic changes can be associated with lower back pain and disability. This review set out to explore why the literature to date has been conflicting. METHODS: A narrative, forensic, non-systematic literature review of selected articles to investigate why the published literature investigating the association between Modic imaging changes and chronic low back pain is inconsistent. RESULTS: This review found that previous systematic reviews and meta-analyses included both heterogeneous study designs and diverse patient syndromes resulting in an inconsistent association between Modic changes and nonspecific chronic lower back pain. Re-analysis of literature data focussing on more homogenous patient populations provides clearer evidence that Modic changes are associated with nonspecific chronic lower back pain and that type 1 Modic changes are more painful than type 2. CONCLUSIONS: Studies using tightly defined homogenous patient groups may provide the best test for association between MRI-findings and pain and disability. Clinical benefit of basivertebral nerve ablation observed in randomised controlled trials further supports the association between type 1 and type 2 Modic changes with pain and disability.


Assuntos
Dor Crônica , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/terapia , Vértebras Lombares , Imageamento por Ressonância Magnética , Projetos de Pesquisa , Dor Crônica/diagnóstico por imagem
4.
Antimicrob Agents Chemother ; 66(3): e0199121, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007139

RESUMO

There is an urgent global need for new strategies and drugs to control and treat multidrug-resistant bacterial infections. In 2017, the World Health Organization (WHO) released a list of 12 antibiotic-resistant priority pathogens and began to critically analyze the antibacterial clinical pipeline. This review analyzes "traditional" and "nontraditional" antibacterial agents and modulators in clinical development current on 30 June 2021 with activity against the WHO priority pathogens mycobacteria and Clostridioides difficile. Since 2017, 12 new antibacterial drugs have been approved globally, but only vaborbactam belongs to a new antibacterial class. Also innovative is the cephalosporin derivative cefiderocol, which incorporates an iron-chelating siderophore that facilitates Gram-negative bacteria cell entry. Overall, there were 76 antibacterial agents in clinical development (45 traditional and 31 nontraditional), with 28 in phase 1, 32 in phase 2, 12 in phase 3, and 4 under regulatory evaluation. Forty-one out of 76 (54%) targeted WHO priority pathogens, 16 (21%) were against mycobacteria, 15 (20%) were against C. difficile, and 4 (5%) were nontraditional agents with broad-spectrum effects. Nineteen of the 76 antibacterial agents have new pharmacophores, and 4 of these have new modes of actions not previously exploited by marketed antibacterial drugs. Despite there being 76 antibacterial clinical candidates, this analysis indicated that there were still relatively few clinically differentiated antibacterial agents in late-stage clinical development, especially against critical-priority pathogens. We believe that future antibacterial research and development (R&D) should focus on the development of innovative and clinically differentiated candidates that have clear and feasible progression pathways to the market.


Assuntos
Infecções Bacterianas , Clostridioides difficile , Infecções por Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos
7.
Spine J ; 21(6): 903-914, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610802

RESUMO

The contribution of bacterial infection to chronic low back pain and its treatment with antibiotics have generated considerable controversy in literature. If efficacious, antibiotics have the potential to transform the treatment of chronic low back pain in a significant subset of patients. Some microbiology studies of disc tissue from patients with CLBP have shown that bacteria are present, most likely due to infection, while others conclude they are absent or if found, it is due to surgical contamination. Clinical studies testing the efficacy of oral antibiotics to treat CLBP have either shown that the treatment is efficacious leading to significantly reduced pain and disability or that their effect is modest and not clinically significant. Critical review of the literature on CLBP, bacterial infection and treatment with antibiotics identified five well-designed and executed microbiology studies characterizing bacteria in disc samples that demonstrate that bacteria do infect herniated disc tissue, but that the bacterial burden is low and may be below the limits of detection in some studies. Two randomized, controlled clinical trials evaluating oral antibiotics in patients with CLBP indicate that for certain subsets of patients, the reduction in pain and disability achieved with antibiotic therapy may be significant. In patients for whom other therapies have failed, and who might otherwise progress to disc replacement or fusion surgery, antibiotic therapy may well be an attractive option to reduce the individual suffering associated with this debilitating condition. Additional clinical research is recommended to refine the selection of patients with CLBP caused or complicated by bacterial infection and most likely to respond to antibiotics, to optimize antibiotic therapy to maximize patient benefit, to minimize and manage side effects, and to address legitimate concerns about antibiotic stewardship.


Assuntos
Infecções Bacterianas , Dor Crônica , Deslocamento do Disco Intervertebral , Dor Lombar , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Humanos , Deslocamento do Disco Intervertebral/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Vértebras Lombares
8.
J Med Chem ; 62(21): 9703-9717, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31626547

RESUMO

Aminoacyl-tRNA synthetases are ubiquitous and essential enzymes for protein synthesis and also a variety of other metabolic processes, especially in bacterial species. Bacterial aminoacyl-tRNA synthetases represent attractive and validated targets for antimicrobial drug discovery if issues of prokaryotic versus eukaryotic selectivity and antibiotic resistance generation can be addressed. We have determined high-resolution X-ray crystal structures of the Escherichia coli and Staphylococcus aureus seryl-tRNA synthetases in complex with aminoacyl adenylate analogues and applied a structure-based drug discovery approach to explore and identify a series of small molecule inhibitors that selectively inhibit bacterial seryl-tRNA synthetases with greater than 2 orders of magnitude compared to their human homologue, demonstrating a route to the selective chemical inhibition of these bacterial targets.


Assuntos
Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Sondas Moleculares/química , Serina-tRNA Ligase/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Estrutura Molecular , Serina-tRNA Ligase/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-31160293

RESUMO

The Prestwick library was screened for antibacterial activity or "antibiotic resistance breaker" (ARB) potential against four species of Gram-negative pathogens. Discounting known antibacterials, the screen identified very few ARB hits, which were strain/drug specific. These ARB hits included antimetabolites (zidovudine, floxuridine, didanosine, and gemcitabine), anthracyclines (daunorubicin, mitoxantrone, and epirubicin), and psychoactive drugs (gabapentin, fluspirilene, and oxethazaine). These findings suggest that there are few approved drugs that could be directly repositioned as adjunct antibacterials, and these will need robust testing to validate efficacy.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Didanosina/farmacologia , Farmacorresistência Bacteriana Múltipla , Etanolaminas/farmacologia , Floxuridina/farmacologia , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , Mitoxantrona/farmacologia , Zidovudina/farmacologia
10.
Lancet Infect Dis ; 19(2): e40-e50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30337260

RESUMO

This analysis of the global clinical antibacterial pipeline was done in support of the Global Action Plan on Antimicrobial Resistance. The study analysed to what extent antibacterial and antimycobacterial drugs for systemic human use as well as oral non-systemic antibacterial drugs for Clostridium difficile infections were active against pathogens included in the WHO priority pathogen list and their innovativeness measured by their absence of cross-resistance (new class, target, mode of action). As of July 1, 2018, 30 new chemical entity (NCE) antibacterial drugs, ten biologics, ten NCEs against Mycobacterium tuberculosis, and four NCEs against C difficile were identified. Of the 30 NCEs, 11 are expected to have some activity against at least one critical priority pathogen expressing carbapenem resistance. The clinical pipeline is dominated by derivatives of established classes and most development candidates display limited innovation. New antibacterial drugs without pre-existing cross-resistance are under-represented and are urgently needed, especially for geographical regions with high resistance rates among Gram-negative bacteria and M tuberculosis.


Assuntos
Antituberculosos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Carbapenêmicos/efeitos adversos , Carbapenêmicos/uso terapêutico , Infecções por Clostridium/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia
11.
J Antimicrob Chemother ; 73(6): 1452-1459, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438542

RESUMO

Antibiotic (antibacterial) resistance is a serious global problem and the need for new treatments is urgent. The current antibiotic discovery model is not delivering new agents at a rate that is sufficient to combat present levels of antibiotic resistance. This has led to fears of the arrival of a 'post-antibiotic era'. Scientific difficulties, an unfavourable regulatory climate, multiple company mergers and the low financial returns associated with antibiotic drug development have led to the withdrawal of many pharmaceutical companies from the field. The regulatory climate has now begun to improve, but major scientific hurdles still impede the discovery and development of novel antibacterial agents. To facilitate discovery activities there must be increased understanding of the scientific problems experienced by pharmaceutical companies. This must be coupled with addressing the current antibiotic resistance crisis so that compounds and ultimately drugs are delivered to treat the most urgent clinical challenges. By understanding the causes of the failures and successes of the pharmaceutical industry's research history, duplication of discovery programmes will be reduced, increasing the productivity of the antibiotic drug discovery pipeline by academia and small companies. The most important scientific issues to address are getting molecules into the Gram-negative bacterial cell and avoiding their efflux. Hence screening programmes should focus their efforts on whole bacterial cells rather than cell-free systems. Despite falling out of favour with pharmaceutical companies, natural product research still holds promise for providing new molecules as a basis for discovery.


Assuntos
Antibacterianos/química , Descoberta de Drogas , Indústria Farmacêutica/estatística & dados numéricos , Resistência Microbiana a Medicamentos , Antibacterianos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Desenho de Fármacos , Indústria Farmacêutica/economia , Indústria Farmacêutica/legislação & jurisprudência , Humanos , Pesquisa
13.
Lancet Infect Dis ; 16(2): 239-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26795692

RESUMO

Antibiotics have saved countless lives and enabled the development of modern medicine over the past 70 years. However, it is clear that the success of antibiotics might only have been temporary and we now expect a long-term and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. A broader approach to address bacterial infection is needed. In this Review, we discuss alternatives to antibiotics, which we defined as non-compound approaches (products other than classic antibacterial agents) that target bacteria or any approaches that target the host. The most advanced approaches are antibodies, probiotics, and vaccines in phase 2 and phase 3 trials. This first wave of alternatives to antibiotics will probably best serve as adjunctive or preventive therapies, which suggests that conventional antibiotics are still needed. Funding of more than £1·5 billion is needed over 10 years to test and develop these alternatives to antibiotics. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches in phase 2 trials, which would be a catalyst for active engagement and investment by the pharmaceutical and biotechnology industry. Only a sustained, concerted, and coordinated international effort will provide the solutions needed for the future.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Farmacorresistência Bacteriana/efeitos dos fármacos , Drogas em Investigação/uso terapêutico , Vacinas/uso terapêutico , Humanos
14.
Eur J Med Chem ; 86: 31-8, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25137573

RESUMO

The development of antibacterial drugs based on novel chemotypes is essential to the future management of serious drug resistant infections. We herein report the design, synthesis and SAR of a novel series of N-ethylurea inhibitors based on a pyridine-3-carboxamide scaffold targeting the ATPase sub-unit of DNA gyrase. Consideration of structural aspects of the GyrB ATPase site has aided the development of this series resulting in derivatives that demonstrate excellent enzyme inhibitory activity coupled to potent Gram positive antibacterial efficacy.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , DNA Girase/metabolismo , Desenho de Fármacos , Inibidores da Topoisomerase II/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/enzimologia , Bactérias/metabolismo , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Ureia/síntese química , Ureia/química
15.
Bioorg Med Chem Lett ; 24(1): 353-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24287381

RESUMO

The design, synthesis and structure-activity relationships of a series of oxazole-benzamide inhibitors of the essential bacterial cell division protein FtsZ are described. Compounds had potent anti-staphylococcal activity and inhibited the cytokinesis of the clinically-significant bacterial pathogen Staphylococcus aureus. Selected analogues possessing a 5-halo oxazole also inhibited a strain of S. aureus harbouring the glycine-to-alanine amino acid substitution at residue 196 of FtsZ which conferred resistance to previously reported inhibitors in the series. Substitutions to the pseudo-benzylic carbon of the scaffold improved the pharmacokinetic properties by increasing metabolic stability and provided a mechanism for creating pro-drugs. Combining multiple substitutions based on the findings reported in this study has provided small-molecule inhibitors of FtsZ with enhanced in vitro and in vivo antibacterial efficacy.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzamidas/farmacologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Desenho de Fármacos , Oxazóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Benzamidas/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazóis/química , Staphylococcus aureus/química , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 23(24): 6598-603, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239017

RESUMO

The discovery and optimisation of a new class of benzothiazole small molecules that inhibit bacterial DNA gyrase and topoisomerase IV are described. Antibacterial properties have been demonstrated by activity against DNA gyrase ATPase and potent activity against Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Haemophilus influenzae. Further refinements to the scaffold designed to enhance drug-likeness included analogues bearing an α-substituent to the carboxylic acid group, resulting in excellent solubility and favourable pharmacokinetic properties.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , DNA Topoisomerase IV/antagonistas & inibidores , Desenho de Fármacos , Ácidos Isonipecóticos/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Benzotiazóis/síntese química , DNA Girase/química , DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/enzimologia , Ativação Enzimática/efeitos dos fármacos , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/enzimologia , Meia-Vida , Camundongos , Testes de Sensibilidade Microbiana , Ratos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/enzimologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacocinética
17.
Antimicrob Agents Chemother ; 57(12): 5977-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24041906

RESUMO

The type II topoisomerases DNA gyrase (GyrA/GyrB) and topoisomerase IV (ParC/ParE) are well-validated targets for antibacterial drug discovery. Because of their structural and functional homology, these enzymes are amenable to dual targeting by a single ligand. In this study, two novel benzothiazole ethyl urea-based small molecules, designated compound A and compound B, were evaluated for their biochemical, antibacterial, and pharmacokinetic properties. The two compounds inhibited the ATPase activity of GyrB and ParE with 50% inhibitory concentrations of <0.1 µg/ml. Prevention of DNA supercoiling by DNA gyrase was also observed. Both compounds potently inhibited the growth of a range of bacterial organisms, including staphylococci, streptococci, enterococci, Clostridium difficile, and selected Gram-negative respiratory pathogens. MIC90s against clinical isolates ranged from 0.015 µg/ml for Streptococcus pneumoniae to 0.25 µg/ml for Staphylococcus aureus. No cross-resistance with common drug resistance phenotypes was observed. In addition, no synergistic or antagonistic interactions between compound A or compound B and other antibiotics, including the topoisomerase inhibitors novobiocin and levofloxacin, were detected in checkerboard experiments. The frequencies of spontaneous resistance for S. aureus were <2.3 × 10(-10) with compound A and <5.8 × 10(-11) with compound B at concentrations equivalent to 8× the MICs. These values indicate a multitargeting mechanism of action. The pharmacokinetic properties of both compounds were profiled in rats. Following intravenous administration, compound B showed approximately 3-fold improvement over compound A in terms of both clearance and the area under the concentration-time curve. The measured oral bioavailability of compound B was 47.7%.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzotiazóis/farmacologia , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerases Tipo II/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Inibidores da Topoisomerase/farmacologia , Ureia/análogos & derivados , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzotiazóis/química , Benzotiazóis/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerase IV/genética , DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo II/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Células Hep G2 , Humanos , Interleucina-33 , Interleucinas , Levofloxacino/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Novobiocina/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacocinética , Ureia/química , Ureia/farmacocinética , Ureia/farmacologia
18.
Antimicrob Agents Chemother ; 57(1): 317-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23114779

RESUMO

The bacterial cell division protein FtsZ is an attractive target for small-molecule antibacterial drug discovery. Derivatives of 3-methoxybenzamide, including compound PC190723, have been reported to be potent and selective antistaphylococcal agents which exert their effects through the disruption of intracellular FtsZ function. Here, we report the further optimization of 3-methoxybenzamide derivatives towards a drug candidate. The in vitro and in vivo characterization of a more advanced lead compound, designated compound 1, is described. Compound 1 was potently antibacterial, with an average MIC of 0.12 µg/ml against all staphylococcal species, including methicillin- and multidrug-resistant Staphylococcus aureus and Staphylococcus epidermidis. Compound 1 inhibited an S. aureus strain carrying the G196A mutation in FtsZ, which confers resistance to PC190723. Like PC190723, compound 1 acted on whole bacterial cells by blocking cytokinesis. No interactions between compound 1 and a diverse panel of antibiotics were measured in checkerboard experiments. Compound 1 displayed suitable in vitro pharmaceutical properties and a favorable in vivo pharmacokinetic profile following intravenous and oral administration, with a calculated bioavailability of 82.0% in mice. Compound 1 demonstrated efficacy in a murine model of systemic S. aureus infection and caused a significant decrease in the bacterial load in the thigh infection model. A greater reduction in the number of S. aureus cells recovered from infected thighs, equivalent to 3.68 log units, than in those recovered from controls was achieved using a succinate prodrug of compound 1, which was designated compound 2. In summary, optimized derivatives of 3-methoxybenzamide may yield a first-in-class FtsZ inhibitor for the treatment of antibiotic-resistant staphylococcal infections.


Assuntos
Antibacterianos/farmacocinética , Proteínas de Bactérias/antagonistas & inibidores , Benzamidas/farmacocinética , Proteínas do Citoesqueleto/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oxazóis/farmacocinética , Pró-Fármacos/farmacocinética , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Succinatos/farmacocinética , Administração Oral , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Benzamidas/síntese química , Benzamidas/química , Benzamidas/farmacologia , Disponibilidade Biológica , Contagem de Colônia Microbiana , Citocinese/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Farmacorresistência Bacteriana Múltipla , Feminino , Injeções Intravenosas , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Oxazóis/síntese química , Oxazóis/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Succinatos/síntese química , Succinatos/farmacologia , Ácido Succínico/química , Coxa da Perna/microbiologia , Resultado do Tratamento
19.
Mol Microbiol ; 80(1): 68-84, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21276094

RESUMO

Cell division in almost all bacteria is orchestrated by the essential tubulin homologue FtsZ, which assembles into a ring-like structure and acts as a scaffold for the division machinery. Division was recently validated as an important target for antibiotics by the demonstration that low-molecular-weight inhibitors of FtsZ, called benzamides, can cure mice infected with Staphylococcus aureus. In treated cells of Bacillus subtilis we show that FtsZ assembles into foci throughout the cell, including abnormal locations at the cell poles and over the nucleoid. These foci are not inactive aggregates because they remain dynamic, turning over almost as rapidly as untreated polymers. Remarkably, although division is completely blocked, the foci efficiently recruit division proteins that normally co-assemble with FtsZ. However, they show no affinity for components of the Min or Nucleoid occlusion systems. In vitro, the benzamides strongly promote the polymerization of FtsZ, into hyperstable polymers, which are highly curved. Importantly, even at low concentrations, benzamides transform the structure of the Z ring, resulting in abnormal helical cell division events. We propose that benzamides act principally by promoting an FtsZ protomer conformation that is incompatible with a higher-order level of assembly needed to make a division ring.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Benzamidas/farmacologia , Proteínas do Citoesqueleto/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Recuperação de Fluorescência Após Fotodegradação , Microscopia Eletrônica , Microscopia de Fluorescência , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
20.
J Med Chem ; 53(10): 3927-36, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20426423
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...