Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 18(8)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053028

RESUMO

Heterologous synthesis of triterpenoids in Saccharomyces cerevisiae from its native metabolite squalene has been reported to offer an alternative to chemical synthesis and extraction from plant material if productivities can be increased.Here, we physiologically characterized a squalene overproducing S. cerevisiae CEN.PK strain to elucidate the effect of cultivation conditions on the production of this central triterpenoid precursor. The maximum achievable squalene concentration was substantially influenced by nutritional conditions, medium composition and cultivation mode. Batch growth on glucose resulted in minimal squalene accumulation, while squalene only significantly accumulated during ethanol consumption (up to 59 mg/gCDW), probably due to increased acetyl-CoA supply on this carbon source. Likewise, low squalene concentrations were observed in glucose-limited chemostat cultivations and improved up to 8-fold upon increasing the ethanol fraction in the feed. In those experiments, a constant, growth-rate-independent specific squalene accumulation rate (2.2 mg/gCDW/h) was recorded resulting in a maximal squalene loading of 30 mg/gCDW at low dilution rates with longer residence times. Coenzyme A availability was identified as possible bottleneck as increased vitamin concentrations, including the Coenzyme A precursor pantothenate, improved squalene titers in batch and chemostat cultivations. This analysis demonstrates that thorough physiologic characterization of production strains is valuable for the identification of bottlenecks already in early stages of strain development and for guiding further optimization efforts.


Assuntos
Meios de Cultura/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Coenzima A/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Ácido Pantotênico/metabolismo
2.
Biotechnol Bioeng ; 114(11): 2528-2538, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28688186

RESUMO

Microbial production of plant derived, biologically active compounds has the potential to provide economic and ecologic alternatives to existing low productive, plant-based processes. Current production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into Saccharomyces cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg/L, and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids. This study highlights the potential of microbial production of plant derived triterpenoids in S. cerevisiae by combining metabolic and process engineering.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Etanol/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/fisiologia , Triterpenos/isolamento & purificação , Triterpenos/metabolismo , Reatores Biológicos/microbiologia , Fermentação/fisiologia , Redes e Vias Metabólicas/genética , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/citologia , Ácido Betulínico
3.
Microb Cell Fact ; 15: 53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980206

RESUMO

BACKGROUND: In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. RESULTS: Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. CONCLUSIONS: In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.


Assuntos
Ácido Láctico/análogos & derivados , Engenharia Metabólica/métodos , Oxirredutases/metabolismo , Saccharomyces cerevisiae , Chloroflexus/enzimologia , Chloroflexus/genética , Regulação Fúngica da Expressão Gênica , Ácido Láctico/biossíntese , Redes e Vias Metabólicas , Organismos Geneticamente Modificados , Oxirredução , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella enterica/enzimologia , Salmonella enterica/genética
4.
BMC Biotechnol ; 16: 20, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26897180

RESUMO

BACKGROUND: Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. RESULTS: At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. CONCLUSION: Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production.


Assuntos
Cobre/metabolismo , Cobre/farmacologia , Proteínas Fúngicas/metabolismo , Pichia/efeitos dos fármacos , Pichia/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Lacase/análise , Lacase/química , Lacase/metabolismo , Análise do Fluxo Metabólico , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Biotechnol Bioeng ; 111(9): 1820-30, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24852702

RESUMO

The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step. In two-liquid phase biotransformations, the product formation pattern was found to be controlled by DAME availability. Supplying DAME as bulk organic phase led to accumulation of the terminal alcohol as the predominant product. Limiting DAME availability via application of bis(2-ethylhexyl)phthalate (BEHP) as organic carrier solvent enabled almost exclusive acid accumulation. Furthermore, utilization of BEHP enhanced catalyst stability by reducing toxic effects of substrate and products. A further shift towards the overoxidized products was achieved by co-expression of the gene encoding the alcohol dehydrogenase AlkJ, which was shown to catalyze efficient and irreversible alcohol to aldehyde oxidation in vivo. With DAME as organic phase, the aldehyde accumulated as main product using resting cells containing AlkBGT, AlkL, as well as AlkJ. This study highlights the versatility of whole-cell biocatalysis for synthesis of industrially relevant bifunctional building blocks and demonstrates how integrated reaction and catalyst engineering can be implemented to control product formation patterns in biocatalytic multistep reactions.


Assuntos
Álcoois/metabolismo , Aldeídos/metabolismo , Citocromo P-450 CYP4A/metabolismo , Escherichia coli/metabolismo , Ácidos Láuricos/metabolismo , Engenharia Metabólica , Álcoois/toxicidade , Aldeídos/toxicidade , Biotecnologia/métodos , Citocromo P-450 CYP4A/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Ácidos Láuricos/toxicidade , Oxirredução , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...