Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 15440, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104373

RESUMO

Nicotinamide N-methyltransferase (NNMT) is a metabolic regulator that catalyzes the methylation of nicotinamide (Nam) using the co-factor S-adenosyl-L-methionine to form 1-methyl-nicotinamide (MNA). Overexpression of NNMT and the presence of the active metabolite MNA is associated with a number of diseases including metabolic disorders. We conducted a high-throughput screening campaign that led to the identification of a tricyclic core as a potential NNMT small molecule inhibitor series. Elaborate medicinal chemistry efforts were undertaken and hundreds of analogs were synthesized to understand the structure activity relationship and structure property relationship of this tricyclic series. A lead molecule, JBSNF-000028, was identified that inhibits human and mouse NNMT activity, reduces MNA levels in mouse plasma, liver and adipose tissue, and drives insulin sensitization, glucose modulation and body weight reduction in a diet-induced obese mouse model of diabetes. The co-crystal structure showed that JBSNF-000028 binds below a hairpin structural motif at the nicotinamide pocket and stacks between Tyr-204 (from Hairpin) and Leu-164 (from central domain). JBSNF-000028 was inactive against a broad panel of targets related to metabolism and safety. Interestingly, the improvement in glucose tolerance upon treatment with JBSNF-000028 was also observed in NNMT knockout mice with diet-induced obesity, pointing towards the glucose-normalizing effect that may go beyond NNMT inhibition. JBSNF-000028 can be a potential therapeutic option for metabolic disorders and developmental studies are warranted.


Assuntos
Doenças Metabólicas , Nicotinamida N-Metiltransferase , Animais , Humanos , Camundongos , Glucose , Doenças Metabólicas/tratamento farmacológico , Niacinamida/metabolismo , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/tratamento farmacológico
2.
SLAS Discov ; 26(6): 783-797, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955247

RESUMO

Classical high-throughput screening (HTS) technologies for the analysis of ionic currents across biological membranes can be performed using fluorescence-based, radioactive, and mass spectrometry (MS)-based uptake assays. These assays provide rapid results for pharmacological HTS, but the underlying, indirect analytical character of these assays can be linked to high false-positive hit rates. Thus, orthogonal and secondary assays using more biological target-based technologies are indispensable for further compound validation and optimization. Direct assay technologies for transporter proteins are electrophysiology-based, but are also complex, time-consuming, and not well applicable for automated profiling purposes. In contrast to conventional patch clamp systems, solid supported membrane (SSM)-based electrophysiology is a sensitive, membrane-based method for transporter analysis, and current technical developments target the demand for automated, accelerated, and sensitive assays for transporter-directed compound screening. In this study, the suitability of the SSM-based technique for pharmacological compound identification and optimization was evaluated performing cell-free SSM-based measurements with the electrogenic amino acid transporter B0AT1 (SLC6A19). Electrophysiological characterization of leucine-induced currents demonstrated that the observed signals were specific to B0AT1. Moreover, B0AT1-dependent responses were successfully inhibited using an established in-house tool compound. Evaluation of current stability and data reproducibility verified the robustness and reliability of the applied assay. Active compounds from primary screens of large compound libraries were validated, and false-positive hits were identified. These results clearly demonstrate the suitability of the SSM-based technique as a direct electrophysiological method for rapid and automated identification of small molecules that can inhibit B0AT1 activity.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fenômenos Eletrofisiológicos , Ensaios de Triagem em Larga Escala/métodos , Sistemas de Transporte de Aminoácidos Neutros/agonistas , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Animais , Bioensaio/métodos , Transporte Biológico/efeitos dos fármacos , Células CHO , Membrana Celular/metabolismo , Cricetulus , Humanos , Camundongos , Técnicas de Patch-Clamp/métodos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Molecules ; 26(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668468

RESUMO

Nicotinamide-N-methyltransferase (NNMT) is a cytosolic enzyme catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to nicotinamide (Nam). It is expressed in many tissues including the liver, adipose tissue, and skeletal muscle. Its expression in several cancer cell lines has been widely discussed in the literature, and recent work established a link between NNMT expression and metabolic diseases. Here we describe our approach to identify potent small molecule inhibitors of NNMT featuring different binding modes as elucidated by X-ray crystallographic studies.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/enzimologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Animais , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/metabolismo , Ratos , Especificidade por Substrato/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 28(5): 922-925, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29433927

RESUMO

Nicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ∼80% at 2 h when dosed in mice orally at 50 mg/kg.


Assuntos
Inibidores Enzimáticos/farmacologia , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Niacinamida/síntese química , Niacinamida/química , Nicotinamida N-Metiltransferase/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 14(14): 3715-20, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15203149

RESUMO

The amidinophenylurea scaffold was earlier shown to provide an excellent template for the synthesis of novel and potent inhibitors of the blood coagulation factor VIIa. In this contribution we describe the structure-based design of potent ligands guided by X-ray crystallography, molecular modeling and docking studies. The design and synthetic efforts were directed towards novel modifications to explore the protease binding region close to the S4 subsite.


Assuntos
Desenho de Fármacos , Fator VIIa/antagonistas & inibidores , Fibrinolíticos/síntese química , Compostos de Fenilureia/síntese química , Sítios de Ligação , Cristalografia por Raios X , Fator VIIa/metabolismo , Fibrinolíticos/farmacologia , Estrutura Molecular , Peptídeo Hidrolases/metabolismo , Compostos de Fenilureia/farmacologia
6.
Bioorg Med Chem Lett ; 13(8): 1463-7, 2003 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-12668013

RESUMO

Selective inhibition of coagulation factor VIIa has recently gained attraction as interesting approach towards antithrombotic treatment. Using parallel synthesis supported by structure-based design and X-ray crystallography, we were able to identify a novel series of amidinophenylurea derivatives with remarkable affinity for factor VIIa. The most potent compound displays a K(i) value of 23 nM for factor VIIa.


Assuntos
Fator VIIa/antagonistas & inibidores , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Modelos Moleculares , Compostos de Fenilureia/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...