Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 381(1): 256-75, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23791550

RESUMO

Egg yolk phosvitin is one of the most highly phosphorylated extracellular matrix proteins known in nature with unique physico-chemical properties deemed to be critical during ex-vivo egg embryo development. We have utilized our unique live mouse calvarial bone organ culture models under conditions which dissociates the two bone remodeling stages, viz., resorption by osteoclasts and formation by osteoblasts, to highlight important and to date unknown critical biological functions of egg phosvitin. In our resorption model live bone cultures were grown in the absence of ascorbate and were stimulated by parathyroid hormone (PTH) to undergo rapid osteoclast formation/differentiation with bone resorption. In this resorption model native phosvitin potently inhibited PTH-induced osteoclastic bone resorption with simultaneous new osteoid/bone formation in the absence of ascorbate (vitamin C). These surprising and critical observations were extended using the bone formation model in the absence of ascorbate and in the presence of phosvitin which supported the above results. The results were corroborated by analyses for calcium release or uptake, tartrate-resistant acid phosphatase activity (marker for osteoclasts), alkaline phosphatase activity (marker for osteoblasts), collagen and hydroxyproline composition, and histological and quantitative histomorphometric evaluations. The data revealed that the discovered bioactivity of phosvitin mirrors that of ascorbate during collagen synthesis and the formation of new osteoid/bone. Complementing those studies use of the synthetic collagen peptide analog and cultured calvarial osteoblasts in conjunction with mass spectrometric analysis provided results that augmented the bone organ culture work and confirmed the capacity of phosvitin to stimulate differentiation of osteoblasts, collagen synthesis, hydroxyproline formation, and biomineralization. There are striking implications and interrelationships of this affect that relates to the evolutionary inactivation of the gene of an enzyme L-gulono-γ-lactone oxidase, which is involved in the final step of ascorbate biosynthesis, in many vertebrate species including passeriform birds, reptiles and teleost fish whose egg yolk contain phosvitin. These represent examples of how developing ex-vivo embryos of such species can achieve connective tissue and skeletal system formation in the absence of ascorbate.


Assuntos
Osso e Ossos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fosvitina/metabolismo , Fosfatase Ácida/metabolismo , Animais , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Remodelação Óssea , Reabsorção Óssea , Cálcio/metabolismo , Diferenciação Celular , Gema de Ovo/metabolismo , Hidroxiprolina/metabolismo , Isoenzimas/metabolismo , Camundongos , Técnicas de Cultura de Órgãos/métodos , Osteoblastos/metabolismo , Osteoclastos/citologia , Peptídeos/química , Fosfatase Ácida Resistente a Tartarato
2.
J Proteomics ; 83: 76-98, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23474079

RESUMO

Phosvitin, derived from the vitellogenin II gene protein, is a highly phosphorylated protein found in egg yolk. A second hypothetical protein has been predicted based on the vitellogenin I gene, but has not been defined at the protein level. Mass spectrometric analysis was used to identify the phosphopeptide sequences and the precise sites of phosphorylation of two phosvitins, phosvitin 1 and phosvitin 2 derived from vitellogenins I and II, respectively. Samples of native phosvitin were subjected to tryptic digestion followed by mass spectrometric analysis: (i) native phosvitin peptides, (ii) after treatment with NaOH, and (iii) after chemical derivatization of P-Ser/P-Thr residues by dithiothreitol under base-catalyzed conditions. A combination of these approaches led to the identification of 68 and 35 phosphopeptides with 89 (81 P-Ser and 8 P-Thr residues) and 62 (57 P-Ser and 5 P-Thr residues) phosphorylation sites of phosvitin 1 and phosvitin 2, respectively. These data for the first time documented on a large scale the major states and sites of phosphorylation of phosvitins with a total of 151 phosphorylation sites. Importantly, the present work also provided the first direct de novo protein amino-acid sequence data for phosvitin 1 protein and evidence for the full expression of vitellogenin I gene. BIOLOGICAL SIGNIFICANCE: We have for the first time generated a large number of phosphopeptides (~100) and identified 151 phosphorylation sites of phosvitin 1 and phosvitin 2, respectively. Importantly, this study also led to the discovery of a novel phosvitin 1 and provided the first direct de novo protein amino-acid sequence data for the full expression of vitellogenin I gene. There is considerable interest in naturally occurring phosphopeptides/phosphoproteins and their application in biomedical fields and in the food industry because of their molecular characteristics and non-toxic nature, hence, our work opens new avenues to pursue such endeavors. In addition, the results provide important fundamental biologic information relevant to evolutionary developments of vertebrate animals beginning with the earliest fish, reptiles, birds and more contemporary mammals. For instance, the abundance of phosvitins with a unique degree of phosphorylation in the egg yolk of fish, reptiles, and birds suggests potential biological functions of phosvitins which are critical to the development of embryos of these distant vertebrates.


Assuntos
Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosvitina/metabolismo , Vitelogeninas/metabolismo , Animais , Galinhas , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Fosforilação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...