Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(20): 4850-4857, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37195238

RESUMO

Filter-less, wavelength-selective photodetectors made of perovskite usually rely on the charge collection narrowing mechanism, which intrinsically limits the response times. Using the narrow excitonic peak of, e.g., two-dimensional (2D) Ruddlesden-Popper perovskites as direct absorbers to realize color-selective photodetectivity promises faster responses. However, one major challenge in realizing such devices remains the separation and charge carrier extraction of the tightly bound excitons. Here, we report on filter-less color-selective photoconductivity in 2D perovskite butylammonium lead iodide thin film devices, exhibiting a distinct resonance in the photocurrent spectrum with a full width at half-maximum of 16.5 nm that correlates to the excitonic absorption. Our devices exhibit unexpectedly efficient charge carrier separation with an external quantum efficiency of ≤8.9% at the excitonic resonance, which we trace back to the involvement of exciton polarons. Our photodetector achieves response times of 150 µs and a maximum specific detectivity of 2.5 × 1010 Jones at the excitonic peak.

2.
J Chem Phys ; 151(22): 224708, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837672

RESUMO

The intentional incorporation of transition metal impurities into colloidal semiconductor nanocrystals allows an extension of the host material's functionality. While dopant incorporation has been extensively investigated in zero-dimensional quantum dots, the substitutional replacement of atoms in two-dimensional (2D) nanostructures by magnetic dopants has been reported only recently. Here, we demonstrate the successful incorporation of Co2+ ions into the shell of CdSe/CdS core/shell nanoplatelets, using these ions (i) as microscopic probes for gaining distinct structural insights and (ii) to enhance the magneto-optical functionality of the host material. Analyzing interatomic Co2+ ligand field transitions, we conclude that Co2+ is incorporated into lattice sites of the CdS shell, and effects such as diffusion of dopants into the CdSe core or diffusion of the dopants out of the heterostructure causing self-purification play a minor role. Taking advantage of the absorption-based technique of magnetic circular dichroism, we directly prove the presence of sp-d exchange interactions between the dopants and the band charge carriers in CdSe/Co2+:CdS heteronanoplatelets. Thus, our study not only demonstrates magneto-optical functionality in 2D nanocrystals by Co2+ doping but also shows that a careful choice of the dopant type paves the way for a more detailed understanding of the impurity incorporation process into these novel 2D colloidal materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...