Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 7(4): 1122-1131, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35416035

RESUMO

Rapid antigen tests are currently used for population screening of COVID-19. However, they lack sensitivity and utilize antibodies as receptors, which can only function in narrow temperature and pH ranges. Consequently, molecularly imprinted polymer nanoparticles (nanoMIPs) are synthetized with a fast (2 h) and scalable process using merely a tiny SARS-CoV-2 fragment (∼10 amino acids). The nanoMIPs rival the affinity of SARS-CoV-2 antibodies under standard testing conditions and surpass them at elevated temperatures or in acidic media. Therefore, nanoMIP sensors possess clear advantages over antibody-based assays as they can function in various challenging media. A thermal assay is developed with nanoMIPs electrografted onto screen-printed electrodes to accurately quantify SARS-CoV-2 antigens. Heat transfer-based measurements demonstrate superior detection limits compared to commercial rapid antigen tests and most antigen tests from the literature for both the alpha (∼9.9 fg mL-1) and delta (∼6.1 fg mL-1) variants of the spike protein. A prototype assay is developed, which can rapidly (∼15 min) validate clinical patient samples with excellent sensitivity and specificity. The straightforward epitope imprinting method and high robustness of nanoMIPs produce a SARS-CoV-2 sensor with significant commercial potential for population screening, in addition to the possibility of measurements in diagnostically challenging environments.


Assuntos
COVID-19 , Impressão Molecular , Nanopartículas , Anticorpos , COVID-19/diagnóstico , Humanos , Polímeros Molecularmente Impressos , Nanopartículas/química , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2
2.
ACS Appl Mater Interfaces ; 13(24): 27868-27879, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110781

RESUMO

We demonstrate that a novel functionalized interface, where molecularly imprinted polymer nanoparticles (nanoMIPs) are attached to screen-printed graphite electrodes (SPEs), can be utilized for the thermal detection of the cardiac biomarker troponin I (cTnI). The ultrasensitive detection of the unique protein cTnI can be utilized for the early diagnosis of myocardial infraction (i.e., heart attacks), resulting in considerably lower patient mortality and morbidity. Our developed platform presents an innovative route to develop accurate, low-cost, and disposable sensors for the diagnosis of cardiovascular diseases, specifically myocardial infraction. A reproducible and advantageous solid-phase approach was utilized to synthesize high-affinity nanoMIPs (average size = 71 nm) for cTnI, which served as synthetic receptors in a thermal sensing platform. To assess the performance and commercial potential of the sensor platform, various approaches were used to immobilize nanoMIPs onto thermocouples or SPEs: dip coating, drop casting, and a covalent approach relying on electrografting with an organic coupling reaction. Characterization of the nanoMIP-functionalized surfaces was performed with electrochemical impedance spectroscopy, atomic force microscopy, and scanning electron microscopy. Measurements from an in-house designed thermal setup revealed that covalent functionalization of nanoMIPs onto SPEs led to the most reproducible sensing capabilities. The proof of application was provided by measuring buffered solutions spiked with cTnI, which demonstrated that through monitoring changes in heat transfer at the solid-liquid interface, we can measure concentrations as low as 10 pg L-1, resulting in the most sensitive test of this type. Furthermore, preliminary data are presented for a prototype platform, which can detect cTnI with shorter measurement times and smaller sample volumes. The excellent sensor performance, versatility of the nanoMIPs, and reproducible and low-cost nature of the SPEs demonstrate that this sensor platform technology has a clear commercial route with high potential to contribute to sustainable healthcare.


Assuntos
Polímeros Molecularmente Impressos/química , Nanopartículas/química , Troponina I/análise , Biomarcadores/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Temperatura
3.
Nanoscale Adv ; 3(14): 4276-4285, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-36132843

RESUMO

Sitagliptin is a hypoglycaemic agent used to reduce blood sugar levels in patients with type 2 diabetes mellitus (T2DM). Real time monitoring of sitagliptin levels is crucial to prevent overdose, which might cause liver, kidney and pancreatic diseases. As an alternative solution, a sitagliptin voltammetric sensor was fabricated using artificial receptors called electroactive molecularly imprinted polymer nanoparticles (nanoMIPs). The nanoMIP tagged with a redox probe (ferrocene) combines both the recognition and reporting functions. Traditional electrochemical sensors determine the redox activity of an analyte. Thus, they are influenced by interfering molecules and the nature of the sample. These innovative nanoMIPs allow us to easily design and customise sensors, increase their sensitivity and minimise the cross reactivity in biological samples. The present technology replaces the traditional enzyme-mediator pairs used in traditional biosensors. The polymer composition was optimized "in silico" using docking and screening methods. Nanoparticles were synthesized via free radical polymerization and a solid phase method and then characterized by infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The specific sitagliptin nanoparticles were covalently immobilized on platinum electrodes via silane and carbodiimide chemistry. The determination of sitagliptin in human plasma by a nanoMIP sensor was assessed by differential pulse voltammetry (DPV). The sensor current response was directly related to the change in nanoMIP conformation triggered by the analyte. The optimisation of the sensor response was made by adjusting (i) the silane concentration, (ii) nanoMIP concentration, and (iii) immobilization time. The sensor measurements in plasma revealed high selectivity and a sensitivity of 32.5 ± 0.6 nA pM-1 towards sitagliptin, and the limit of detection of the fabricated sensor was found to be 0.06 pM. The sensor displayed a satisfactory performance for the determination of sitagliptin in spiked human plasma, demonstrating the potential of this technology for drug monitoring and clinical diagnosis.

4.
Environ Sci Pollut Res Int ; 27(16): 19095-19107, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30710327

RESUMO

The surface of ultrafine yttrium oxide nanoparticles (NPs) with mean size of 7-8 nm was modified with a functional polymer layer to improve their dispersion and impart fluorescent properties for imaging purposes. Surface functionalization was achieved by silanization of yttrium oxide NPs with 3-trimethoxysilylpropyl methacrylate followed by grafting of a co-polymer made of acrylic acid (AA) and ethylene glycol methacrylate phosphate (EGMP). The polymer shell decreases the surface energy of NPs, enhances their polarity, and, as a result, improves their colloidal stability. The synthesized NPs are capable of scavenging free radicals and for this reason have therapeutic potential that warrants further investigations. Furthermore, these stabilized core-shell NPs showed a very low cytotoxicity, confirming that the polymer shell sensibly improves the biocompatibility of bare yttrium oxide NPs, which are otherwise toxic on their own. Poly-EGMP yttrium NPs proved to be safe up to 0.1 mg/g body weight in 1 month old Sprague-Dawley rats, showing also the ability to cross the blood-brain barrier short time after tail injection. The surface modification of yttrium NPs here described allows these NPs to be potentially used in theranostics to reduce neurodegenerative damage due to the heat stress.


Assuntos
Nanopartículas , Nanomedicina Teranóstica , Animais , Polietilenoglicóis , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Ítrio
5.
ACS Sens ; 4(10): 2838-2845, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31571480

RESUMO

This manuscript describes the production of molecularly imprinted polymer nanoparticles (nanoMIPs) for the cardiac biomarkers heart-fatty acid binding protein (H-FABP) and ST2 by solid-phase synthesis, and their use as synthetic antibodies in a multiplexed sensing platform. Analysis by surface plasmon resonance (SPR) shows that the affinity of the nanoMIPs is similar to that of commercially available antibodies. The particles are coated onto the surface of thermocouples and inserted into 3D-printed flow cells of different multiplexed designs. We demonstrate that it is possible to selectively detect both cardiac biomarkers within the physiologically relevant range. Furthermore, the developed sensor platform is the first example of a multiplex format of this thermal analysis technique which enables simultaneous measurements of two different compounds with minimal cross selectivity. The format where three thermocouples are positioned in parallel exhibits the highest sensitivity, which is explained by modeling the heat flow distribution within the flow cell. This design is used in further experiments and proof-of-application of the sensor platform is provided by measuring spiked fetal bovine serum samples. Because of the high selectivity, short measurement time, and low cost of this array format, it provides an interesting alternative to traditional immunoassays. The use of nanoMIPs enables a multimarker strategy, which has the potential to contribute to sustainable healthcare by improving the reliability of cardiac biomarker testing.


Assuntos
Técnicas Biossensoriais , Proteína 3 Ligante de Ácido Graxo/sangue , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Impressão Molecular , Biomarcadores/sangue , Nanopartículas/química , Ressonância de Plasmônio de Superfície
6.
RSC Adv ; 9(48): 27849-27855, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530457

RESUMO

We present here a novel screening tool for optimisation of polymerisation mixtures used in imprinting of peptides and proteins. To facilitate rapid synthesis and screening of a combinatorial library of polymers the solid-phase synthesis method developed by Piletsky and co-workers was scaled down to 50 mg of template-immobilised solid phase, allowing a single well of a 96-well microplate to function as an individual reaction vessel. In this way, 32 different polymer compositions containing N-isopropylacrylamide, acrylic acid, N-(3-aminopropyl)methacrylamide hydrochloride, and N-tert-butylacrylamide, were tested in imprinting of three peptides and three proteins. Utilising filtration microplates has allowed the elution and washing steps to be performed in a similar manner to the large-scale synthesis, whilst incorporation of a fluorescent monomer (N-fluoresceinylacrylamide) made it possible to analyse the binding of synthesised polymer nanoparticles to the solid phase with immobilised templates under different washing conditions. The experiment has proven that the variations in monomer compositions had an effect on the yield and affinity of synthesised molecularly imprinted polymers for the peptides, but not for the proteins. Imprinting in this way presents an ideal method for performing small-scale syntheses for testing polymerisation mixtures, as information regarding the molecularly imprinted polymers affinity can be assessed as part of the elution process, without a need for time-consuming analysis such as quartz crystal microbalance or surface plasmon resonance.

7.
Anal Chem ; 91(1): 958-964, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30518208

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is a widely used standard method for sensitive detection of analytes of environmental, clinical, or biotechnological interest. However, ELISA has clear drawbacks related to the use of relatively unstable antibodies and enzyme conjugates and the need for several steps such as washing of nonbound conjugates and addition of dye reagents. Herein, we introduce a new completely abiotic assay where antibodies and enzymes are replaced with fluorescent molecularly imprinted polymer nanoparticles (nanoMIPs) and target-conjugated magnetic nanoparticles, which acted as both reporter probes and binding agents. The components of the molecularly imprinted polymer nanoparticle assay (MINA) are assembled in microtiter plates fitted with magnetic inserts. We have compared the performance of a new magnetic assay with molecularly imprinted polymer (MIP)-based ELISA for the detection of methyl parathion (MP). Both assays have shown high sensitivity toward allowing detection of MP at picomolar concentrations without any cross-reactivity against chlorpyriphos and fenthion. The fully abiotic assays were also proven to detect analyte in real samples such as tap water and milk. Unlike ELISA-based systems, the novel assay required no washing steps or addition of enzyme substrates, making it more user-friendly and suitable for high throughput screening.


Assuntos
Ensaio de Imunoadsorção Enzimática , Metil Paration/análise , Impressão Molecular , Nanopartículas/química , Polímeros/química
8.
Biosens Bioelectron ; 120: 108-114, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30173008

RESUMO

Molecularly Imprinted Polymers (MIPs) are synthetic receptors capable of selective binding to their target (template) molecules and, hence, are used as recognition elements in assays and sensors as a replacement for relatively unstable enzymes and antibodies. Herein, we describe a manufacturing-friendly protocol for integration of MIP nanoparticles (nanoMIPs) with a (label-free) capacitive sensor. The nanoMIPs were produced by solid-phase synthesis for two templates with different sizes and properties, including a small molecule tetrahydrocannabinol (THC) and a protein (trypsin). NanoMIPs were deposited on the surface of the sensor and the change in capacitance (ΔC) upon binding of the target was measured. The significant improvement in the selectivity and limit of detection (one order of magnitude compared to previously used MIP microparticles) can be attributed to their increased surface-to-volume ratio and higher specificity of the nanoMIPs produced by the solid-phase method. The methodology described is also compatible with common sensor fabrication approaches, as opposed to methods involving in situ MIP polymerisation. The proposed sensor shows high selectivity, fast sensor response (45 min including injection, regeneration and re-equilibration with running buffer), and straightforward data analysis, which makes it viable for label-free monitoring in real-time. The set of targets assessed in this manuscript shows the general applicability of the biosensor platform.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas/química , Polímeros/química , Impressão Molecular
9.
Nano Lett ; 18(8): 4641-4646, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29969563

RESUMO

Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is over-expressed in many tumors, including almost half of triple-negative breast cancers. The latter belong to a very-aggressive and drug-resistant form of malignancy. Although humanized anti-EGFR antibodies can work efficiently against these cancers both as monotherapy and in combination with genotoxic drugs, instability and high production costs are some of their known drawbacks in clinical use. In addition, the development of antibodies to target membrane proteins is a very challenging task. Accordingly, the main focus of the present work is the design of supramolecular agents for the targeting of membrane proteins in cancer cells and, hence, more-specific drug delivery. These were produced using a novel double-imprinting approach based on the solid-phase method for preparation of molecularly imprinted polymer nanoparticles (nanoMIPs), which were loaded with doxorubicin and targeted toward a linear epitope of EGFR. Additionally, upon binding, doxorubicin-loaded anti-EGFR nanoMIPs elicited cytotoxicity and apoptosis only in those cells that over-expressed EGFR. Thus, this approach can provide a plausible alternative to conventional antibodies and sets up a new paradigm for the therapeutic application of this class of materials against clinically relevant targets. Furthermore, nanoMIPs can promote the development of cell imaging tools against difficult targets such as membrane proteins.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Receptores ErbB/metabolismo , Impressão Molecular/métodos , Nanopartículas/química , Antineoplásicos/administração & dosagem , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Feminino , Humanos , Terapia de Alvo Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...