Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Algorithmica ; 83(1): 144-176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33583987

RESUMO

A robot modeled as a deterministic finite automaton has to build a structure from material available to it. The robot navigates in the infinite oriented grid Z × Z . Some cells of the grid are full (contain a brick) and others are empty. The subgraph of the grid induced by full cells, called the shape, is initially connected. The (Manhattan) distance between the furthest cells of the shape is called its span. The robot starts at a full cell. It can carry at most one brick at a time. At each step it can pick a brick from a full cell, move to an adjacent cell and drop a brick at an empty cell. The aim of the robot is to construct the most compact possible structure composed of all bricks, i.e., a nest. That is, the robot has to move all bricks in such a way that the span of the resulting shape be the smallest. Our main result is the design of a deterministic finite automaton that accomplishes this task and subsequently stops, for every initially connected shape, in time O ( s n ) , where s is the span of the initial shape and n is the number of bricks. We show that this complexity is optimal.

2.
Algorithmica ; 81(1): 317-342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30872882

RESUMO

Two mobile robots are initially placed at the same point on an infinite line. Each robot may move on the line in either direction not exceeding its maximal speed. The robots need to find a stationary target placed at an unknown location on the line. The search is completed when both robots arrive at the target point. The target is discovered at the moment when either robot arrives at its position. The robot knowing the placement of the target may communicate it to the other robot. We look for the algorithm with the shortest possible search time (i.e. the worst-case time at which both robots meet at the target) measured as a function of the target distance from the origin (i.e. the time required to travel directly from the starting point to the target at unit velocity). We consider two standard models of communication between the robots, namely wireless communication and communication by meeting. In the case of communication by meeting, a robot learns about the target while sharing the same location with a robot possessing this knowledge. We propose here an optimal search strategy for two robots including the respective lower bound argument, for the full spectrum of their maximal speeds. This extends the main result of Chrobak et al. (in: Italiano, Margaria-Steffen, Pokorný, Quisquater, Wattenhofer (eds) Current trends in theory and practice of computer science, SOFSEM, 2015) referring to the exact complexity of the problem for the case when the speed of the slower robot is at least one third of the faster one. In the wireless communication model, a message sent by one robot is instantly received by the other robot, regardless of their current positions on the line. For this model, we design a strategy which is optimal whenever the faster robot is at most 17 + 4 ≈ 8.123 times faster than the slower one. We also prove that otherwise the wireless communication offers no advantage over communication by meeting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...