Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 14026, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26356304

RESUMO

Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

2.
Anal Chem ; 85(24): 11885-92, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24261311

RESUMO

The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.


Assuntos
Carbonatos/química , Lasers , Óxidos/química , Sulfetos/química , Raios Ultravioleta , Isótopos de Ferro/análise , Fatores de Tempo
3.
Opt Express ; 20(9): 9604-15, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535052

RESUMO

We have developed a new experimental setup based on optical Kerr gating in order to isolate either the transmitted or the scattered light going through an optically thick medium. This selectivity can be obtained by finely tuning the focusing of the different laser beams in the Kerr medium. We have developed an experimental setup. A Monte Carlo simulation scheme generates an accurate model of scattering processes taking into account the time of flight, the geometry of the Kerr gating and the polarization. We show that our experimental setup is capable of analyzing the transmitted light with optical densities up to OD = 9.7, and scattered light beyond OD = 347 in poly-disperse silica spheres in water (distribution centered on ~0.9 µm radius) at λ = 550 nm. Strongly positive correlations are obtained with simulations.


Assuntos
Luz , Modelos Estatísticos , Nefelometria e Turbidimetria/métodos , Refratometria/métodos , Espalhamento de Radiação , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...