Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 89: 100976, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37572394

RESUMO

Obsessive Compulsive Disorder (OCD) is a mental health condition still classified and diagnosed with subjective interview-based assessments and which molecular clues have not completely been elucidated. We have recently identified a new regulator of anxiety and OCD-like behavior called Immuno-moodulin (IMOOD) and, here, we report that IMOOD gene promoter is differentially methylated in OCD subjects when compared to genomic material collected from healthy controls and this alteration is significantly correlated with the increased expression of the gene in OCD. We also demonstrated that IMOOD promoter can form G-quadruplexes and we suggest that, in homeostatic conditions, these structures could evoke DNA-methylation silencing the gene, whereas in pathological conditions, like OCD, could induce gene expression making the promoter more accessible to transcriptional factors. We here thus further suggest IMOOD as a new biomarker for OCD and also hypothesize new mechanisms of gene regulation.


Assuntos
Quadruplex G , Transtorno Obsessivo-Compulsivo , Humanos , Metilação de DNA , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/psicologia , Regulação da Expressão Gênica , Homeostase
3.
Compr Psychiatry ; 123: 152388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060625

RESUMO

"We are all in this together" - we often hear this phrase when we want to flag up a problem that is not for a single individual but concerns us all. A similar reflection has been recently made in the field of mental disorders where brain-centric scientists have started to zoom out their brain-focused graphical representations of the mechanisms regulating psychiatric diseases to include other organs or mediators that did not belong historically to the world of neuroscience. The brain itself - that has long been seen as a master in command secluded in its fortress (the blood brain barrier), has now become a collection of Airbnb(s) where all sorts of cells come in and out and sometimes even rearrange the furniture! Under this new framework of reference, mental disorders have become multisystem pathologies where different biological systems - not just the CNS -contribute 'all together' to the development and severity of the disease. In this narrative review article, we will focus on one of the most popular biological systems that has been shown to influence the functioning of the CNS: the immune system. We will specifically highlight the two main features of the immune system and the CNS that we think are important in the context of mental disorders: plasticity and memory.


Assuntos
Encéfalo , Transtorno Obsessivo-Compulsivo , Humanos , Transtorno Obsessivo-Compulsivo/diagnóstico
5.
Brain Behav Immun ; 107: 397-398, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400333
6.
Brain Behav Immun ; 102: 179-194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35217174

RESUMO

Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.


Assuntos
Sepse , Isolamento Social , Animais , Imunidade , Camundongos , Temperatura
9.
Cardiovasc Res ; 116(10): 1666-1687, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32352535

RESUMO

The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the greatest medical challenge in decades. We provide a comprehensive review of the clinical course of COVID-19, its comorbidities, and mechanistic considerations for future therapies. While COVID-19 primarily affects the lungs, causing interstitial pneumonitis and severe acute respiratory distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular system. Risk of severe infection and mortality increase with advancing age and male sex. Mortality is increased by comorbidities: cardiovascular disease, hypertension, diabetes, chronic pulmonary disease, and cancer. The most common complications include arrhythmia (atrial fibrillation, ventricular tachyarrhythmia, and ventricular fibrillation), cardiac injury [elevated highly sensitive troponin I (hs-cTnI) and creatine kinase (CK) levels], fulminant myocarditis, heart failure, pulmonary embolism, and disseminated intravascular coagulation (DIC). Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine protease, binds to the transmembrane angiotensin-converting enzyme 2 (ACE2) -a homologue of ACE-to enter type 2 pneumocytes, macrophages, perivascular pericytes, and cardiomyocytes. This may lead to myocardial dysfunction and damage, endothelial dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI). While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or angiotensin receptor blockers (ARBs) worsen prognosis. Hence, patients should not discontinue their use. Moreover, renin-angiotensin-aldosterone system (RAAS) inhibitors might be beneficial in COVID-19. Initial immune and inflammatory responses induce a severe cytokine storm [interleukin (IL)-6, IL-7, IL-22, IL-17, etc.] during the rapid progression phase of COVID-19. Early evaluation and continued monitoring of cardiac damage (cTnI and NT-proBNP) and coagulation (D-dimer) after hospitalization may identify patients with cardiac injury and predict COVID-19 complications. Preventive measures (social distancing and social isolation) also increase cardiovascular risk. Cardiovascular considerations of therapies currently used, including remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons, and lopinavir/ritonavir, as well as experimental therapies, such as human recombinant ACE2 (rhACE2), are discussed.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus , Miocardite , Pandemias , Pneumonia Viral , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Humanos , Miocardite/diagnóstico , Miocardite/tratamento farmacológico , Miocardite/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Medição de Risco , SARS-CoV-2
10.
Brain Behav Immun ; 87: 689-702, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126289

RESUMO

Patients suffering from autoimmune diseases are more susceptible to mental disorders yet, the existence of specific cellular and molecular mechanisms behind the co-morbidity of these pathologies is far from being fully elucidated. By generating transgenic mice overexpressing Annexin-A1 exclusively in T cells to study its impact in models of autoimmune diseases, we made the unpredicted observation of an increased level of anxiety. Gene microarray of Annexin-A1 CD4+ T cells identified a novel anxiogenic factor, a small protein of approximately 21 kDa encoded by the gene 2610019F03Rik which we named Immuno-moodulin. Neutralizing antibodies against Immuno-moodulin reverted the behavioral phenotype of Annexin-A1 transgenic mice and lowered the basal levels of anxiety in wild type mice; moreover, we also found that patients suffering from obsessive compulsive disorders show high levels of Imood in their peripheral mononuclear cells. We thus identify this protein as a novel peripheral determinant that modulates anxiety behavior. Therapies targeting Immuno-moodulin may lead to a new type of treatment for mental disorders through regulation of the functions of the immune system, rather than directly acting on the nervous system.


Assuntos
Anexina A1 , Doenças Autoimunes , Animais , Humanos , Camundongos , Camundongos Transgênicos , Linfócitos T
11.
Basic Res Cardiol ; 114(5): 34, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31372765

RESUMO

Reparative macrophages play an important role in cardiac repair post-myocardial infarction (MI). Bone marrow mononuclear cells (BM-MNCs) have been investigated as a donor for cell therapy but with limited clinical success. These cells, however, may be utilized as a source for reparative macrophages. This translational study aimed to establish a robust in vitro protocol to produce functional reparative macrophages from BM-MNCs and to establish pre-clinical evidence of the efficacy of reparative macrophage transplantation for the treatment of MI. Mouse BM-MNCs were treated with M-CSF plus IL-4, IL-10, TGF-ß1 or combinations of these in vitro. The concomitant administration of M-CSF and IL-4 produced the highest rate and largest number of CD11b+F4/80+CD206+ reparative macrophages. Expression and secretion of tissue repair-related factors including IGF-1, TGF-ß1, VEGF and IL1-ra were remarkably enhanced in reparative macrophages compared to BM-MNCs. These cells were transplanted in a mouse MI model, resulting in evident improvement in cardiac function recovery, compared to BM-MNC transplantation. Histological studies showed that reparative macrophage transplantation enhanced myocardial tissue repair including augmented microvascular formation, reduced cardiomyocyte hypertrophy and attenuated interstitial fibrosis. Moreover, survival of reparative macrophages in the heart post-transplantation was increased compared to BM-MNCs. Reparative macrophage transplantation also increased host-derived reparative macrophages in part through TGF-ß secretion. In conclusion, concomitant M-CSF + IL-4 treatment effectively produced reparative macrophages from BM-MNCs in vitro. Transplantation of produced reparative macrophage achieved a superior therapeutic efficacy, compared to BM-MNC transplantation, through the enhanced quantity and quality of donor cell engraftment. Further development of this advanced cell-based therapy is warranted.


Assuntos
Macrófagos/transplante , Infarto do Miocárdio/patologia , Animais , Células da Medula Óssea/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pesquisa Translacional Biomédica
12.
Eur J Immunol ; 49(1): 66-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30365177

RESUMO

The interferon-inducible transmembrane (Ifitm/Fragilis) genes encode homologous proteins that are induced by IFNs. Here, we show that IFITM proteins regulate murine CD4+ Th cell differentiation. Ifitm2 and Ifitm3 are expressed in wild-type (WT) CD4+ T cells. On activation, Ifitm3 was downregulated and Ifitm2 was upregulated. Resting Ifitm-family-deficient CD4+ T cells had higher expression of Th1-associated genes than WT and purified naive Ifitm-family-deficient CD4+ T cells differentiated more efficiently to Th1, whereas Th2 differentiation was inhibited. Ifitm-family-deficient mice, but not Ifitm3-deficient mice, were less susceptible than WT to induction of allergic airways disease, with a weaker Th2 response and less severe disease and lower Il4 but higher Ifng expression and IL-27 secretion. Thus, the Ifitm family is important in adaptive immunity, influencing Th1/Th2 polarization, and Th2 immunopathology.


Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Proteínas de Membrana/metabolismo , Sistema Respiratório/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Interferon gama/metabolismo , Interleucina-27/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Equilíbrio Th1-Th2/genética
13.
Front Immunol ; 9: 2752, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555461

RESUMO

The infiltration of Th17 cells in tissues and organs during the development of many autoimmune diseases is considered a key step toward the establishment of chronic inflammation. Indeed, the localized and prolonged release of IL-17 in specific tissues has been associated with an increased severity of the inflammatory response that remains sustained over time. The cellular and molecular mechanisms behind these effects are far from being clear. In this study we investigated the effects of two repetitive administration of recombinant IL-17 into the murine air pouch to simulate a scenario where IL-17 is released over time in a pre-inflamed tissue. Consistent with our previous observations, mice receiving a single dose of IL-17 showed a transitory influx of neutrophils into the air pouch that peaked at 24 h and declined at 48 h. Conversely, mice receiving a double dose of the cytokine-one at time 0 and the second after 24 h-showed a more dramatic inflammatory response with almost 2-fold increase in the number of infiltrated leukocytes and significant higher levels of TNF-α and IL-6 in the inflammatory fluids. Further analysis of the exacerbated inflammatory response of double-injected IL-17 mice showed a unique cellular and biochemical profile with inflammatory monocytes as the second main population emigrating to the pouch and IL-16 and TREM-1 as the most upregulated cytokines found in the inflammatory fluids. Most interestingly, mice receiving a double injection of IL-1ß did not show any change in the cellular or biochemical inflammatory response compared to those receiving a single injection or just vehicle. Collectively these results shed some light on the function of IL-17 as pro-inflammatory cytokine and provide possible novel ways to target therapeutically the pathogenic effects of IL-17 in autoimmune conditions.


Assuntos
Interleucina-16/imunologia , Interleucina-17/imunologia , Monócitos/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Animais , Inflamação/imunologia , Inflamação/patologia , Camundongos , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/patologia
14.
Oncotarget ; 9(10): 9177-9198, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507682

RESUMO

Despite the well-recognized role of loss-of-function mutations of the aryl hydrocarbon receptor interacting protein gene (AIP) predisposing to pituitary adenomas, the pituitary-specific function of this tumor suppressor remains an enigma. To determine the repertoire of interacting partners for the AIP protein in somatotroph cells, wild-type and variant AIP proteins were used for pull-down/quantitative mass spectrometry experiments against lysates of rat somatotropinoma-derived cells; relevant findings were validated by co-immunoprecipitation and co-localization. Global gene expression was studied in AIP mutation positive and negative pituitary adenomas via RNA microarrays. Direct interaction with AIP was confirmed for three known and six novel partner proteins. Novel interactions with HSPA5 and HSPA9, together with known interactions with HSP90AA1, HSP90AB1 and HSPA8, indicate that the function/stability of multiple chaperone client proteins could be perturbed by a deficient AIP co-chaperone function. Interactions with TUBB, TUBB2A, NME1 and SOD1 were also identified. The AIP variants p.R304* and p.R304Q showed impaired interactions with HSPA8, HSP90AB1, NME1 and SOD1; p.R304* also displayed reduced binding to TUBB and TUBB2A, and AIP-mutated tumors showed reduced TUBB2A expression. Our findings suggest that cytoskeletal organization, cell motility/adhesion, as well as oxidative stress responses, are functions that are likely to be involved in the tumor suppressor activity of AIP.

15.
Antioxid Redox Signal ; 28(9): 852-872, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28494612

RESUMO

SIGNIFICANCE: The environment can elicit biological responses such as oxidative stress (OS) and inflammation as a consequence of chemical, physical, or psychological changes. As population studies are essential for establishing these environment-organism interactions, biomarkers of OS or inflammation are critical in formulating mechanistic hypotheses. Recent Advances: By using examples of stress induced by various mechanisms, we focus on the biomarkers that have been used to assess OS and inflammation in these conditions. We discuss the difference between biomarkers that are the result of a chemical reaction (such as lipid peroxides or oxidized proteins that are a result of the reaction of molecules with reactive oxygen species) and those that represent the biological response to stress, such as the transcription factor NRF2 or inflammation and inflammatory cytokines. CRITICAL ISSUES: The high-throughput and holistic approaches to biomarker discovery used extensively in large-scale molecular epidemiological exposome are also discussed in the context of human exposure to environmental stressors. FUTURE DIRECTIONS: We propose to consider the role of biomarkers as signs and to distinguish between signs that are just indicators of biological processes and proxies that one can interact with and modify the disease process. Antioxid. Redox Signal. 28, 852-872.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Inflamação/sangue , Estresse Oxidativo , Humanos , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Peróxidos Lipídicos/sangue , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
16.
Dialogues Clin Neurosci ; 19(1): 9-19, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28566943

RESUMO

Affect and emotion are defined as "an essential part of the process of an organism's interaction with stimuli." Similar to affect, the immune response is the "tool" the body uses to interact with the external environment. Thanks to the emotional and immunological response, we learn to distinguish between what we like and what we do not like, to counteract a broad range of challenges, and to adjust to the environment we are living in. Recent compelling evidence has shown that the emotional and immunological systems share more than a similarity of functions. This review article will discuss the crosstalk between these two systems and the need for a new scientific area of research called affective immunology. Research in this field will allow a better understanding and appreciation of the immunological basis of mental disorders and the emotional side of immune diseases.


Afecto y emoción son definidos como "una parte esencial del proceso de interaccíon de un organismo con un estímulo". Similar al afecto, la respuesta inmune es la "herramienta" que emplea el cuerpo para interactuar con el ambiente externo. Gracias a la respuesta emocional e inmune, aprendemos a distinguir entre lo que queremos y no queremos, a contrarrestar una amplia gama de desafíos, y a adaptarnos con el ambiente donde estamos viviendo. Evidencias recientes y convincentes han mostrado que los sistemas emocional e inmunológico comparten más de una semejanza de funciones. Este artículo de revisión discutirá las alteraciones de la comunicación entre estos sistemas y la necesidad de una nueva área de investigación científica denominada inmunología afectiva. La investigación en este campo permitirá una mejor comprensión y apreciación de las bases inmunológicas de los trastornos mentales y del aspecto emocional de las enfermedades inmunes.


L'affect et l'émotion se définissent comme « une part essentielle du processus d'interaction d'un organisme avec les stimuli ¼. Similaire à l'affect, la réponse immunitaire est « l'outil ¼ utilisé par le corps pour interagir avec l'environnement extérieur. Grâce aux réponses émotionnelle et immunologique, nous apprenons à distinguer ce que nous aimons de ce que nous n'aimons pas, pour affronter un large éventail de défis, et pour nous adapter à l'environnement dans lequel nous vivons. Des données récentes ont montré que les systèmes émotionnels et immunologiques partagent plus qu'une similarité de fonctions. Cet article de synthèse analyse les interactions entre ces deux systèmes et la nécessité de définir un nouveau domaine de recherche appelé immunologie affective. La recherche dans ce domaine permettra une meilleure compréhension et une meilleure appréciation de la base immunologique des troubles mentaux et du côté émotionnel des maladies immunitaires.


Assuntos
Emoções/fisiologia , Doenças do Sistema Imunitário/psicologia , Transtornos do Humor/imunologia , Receptor Cross-Talk/imunologia , Humanos , Doenças do Sistema Imunitário/imunologia , Imunidade
17.
JCI Insight ; 2(7): e90723, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28405616

RESUMO

Living in a mentally and physically stimulating environment has been suggested to have a beneficial effect on the immune response. This study investigates these effects, utilizing a 2-week program of environmental enrichment (EE) and 2 models of acute inflammation: zymosan-induced peritonitis (ZIP) and the cecal ligation and puncture (CLP) model of sepsis. Our results revealed that following exposure to EE, mice possessed a significantly higher circulating neutrophil to lymphocyte ratio compared with control animals. When subject to ZIP, EE animals exhibit enhanced neutrophil and macrophage influx into their peritoneal cavity. Corresponding results were found in CLP, where we observed an improved capacity for enriched animals to clear systemic microbial infection. Ex vivo investigation of leukocyte activity also revealed that macrophages from EE mice presented an enhanced phagocytic capacity. Supporting these findings, microarray analysis of EE animals revealed the increased expression of immunomodulatory genes associated with a heightened and immunoprotective status. Taken together, these results provide potentially novel mechanisms by which EE influences the development and dynamics of the immune response.


Assuntos
Meio Ambiente , Inflamação/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritonite/imunologia , Sepse/imunologia , Animais , Ceco/lesões , Modelos Animais de Doenças , Ligadura , Masculino , Camundongos , Análise em Microsséries , Peritonite/induzido quimicamente , Fagocitose , Sepse/etiologia , Zimosan
18.
J Clin Invest ; 127(1): 169-182, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27893465

RESUMO

BACKGROUND: Cardiovascular disease occurs at lower incidence in premenopausal females compared with age-matched males. This variation may be linked to sex differences in inflammation. We prospectively investigated whether inflammation and components of the inflammatory response are altered in females compared with males. METHODS: We performed 2 clinical studies in healthy volunteers. In 12 men and 12 women, we assessed systemic inflammatory markers and vascular function using brachial artery flow-mediated dilation (FMD). In a further 8 volunteers of each sex, we assessed FMD response to glyceryl trinitrate (GTN) at baseline and at 8 hours and 32 hours after typhoid vaccine. In a separate study in 16 men and 16 women, we measured inflammatory exudate mediators and cellular recruitment in cantharidin-induced skin blisters at 24 and 72 hours. RESULTS: Typhoid vaccine induced mild systemic inflammation at 8 hours, reflected by increased white cell count in both sexes. Although neutrophil numbers at baseline and 8 hours were greater in females, the neutrophils were less activated. Systemic inflammation caused a decrease in FMD in males, but an increase in females, at 8 hours. In contrast, GTN response was not altered in either sex after vaccine. At 24 hours, cantharidin formed blisters of similar volume in both sexes; however, at 72 hours, blisters had only resolved in females. Monocyte and leukocyte counts were reduced, and the activation state of all major leukocytes was lower, in blisters of females. This was associated with enhanced levels of the resolving lipids, particularly D-resolvin. CONCLUSIONS: Our findings suggest that female sex protects against systemic inflammation-induced endothelial dysfunction. This effect is likely due to accelerated resolution of inflammation compared with males, specifically via neutrophils, mediated by an elevation of the D-resolvin pathway. TRIAL REGISTRATION: ClinicalTrials.gov NCT01582321 and NRES: City Road and Hampstead Ethics Committee: 11/LO/2038. FUNDING: The authors were funded by multiple sources, including the National Institute for Health Research, the British Heart Foundation, and the European Research Council.


Assuntos
Mediadores da Inflamação/sangue , Nitroglicerina/administração & dosagem , Caracteres Sexuais , Vacinas Tíficas-Paratíficas/administração & dosagem , Adolescente , Adulto , Vesícula/sangue , Vesícula/induzido quimicamente , Artéria Braquial/fisiopatologia , Cantaridina/administração & dosagem , Cantaridina/efeitos adversos , Feminino , Humanos , Inflamação/sangue , Inflamação/induzido quimicamente , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
19.
Front Immunol ; 7: 381, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746779

RESUMO

T cells are known to be plastic and to change their phenotype according to the cellular and biochemical milieu they are embedded in. In this study, we transposed this concept at a macroscopic level assessing whether changes in the environmental housing conditions of C57/BL6 mice would influence the phenotype and function of T cells. Our study shows that exposure to 2 weeks in an enriched environment (EE) does not impact the T cell repertoire in vivo and causes no changes in the early TCR-driven activation events of these cells. Surprisingly, however, T cells from enriched mice showed a unique T helper effector cell phenotype upon differentiation in vitro. This was featured by a significant reduction in their ability to produce IFN-γ and by an increased release of IL-10 and IL-17. Microarray analysis of these cells also revealed a unique gene fingerprint with key signaling pathways involved in autoimmunity being modulated. Together, our results provide first evidence for a specific effect of EE on T cell differentiation and its associated changes in gene expression profile. In addition, our study sheds new light on the possible mechanisms by which changes in environmental factors can significantly influence the immune response of the host and favor the resolution of the inflammatory response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...