Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 4661, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145971

RESUMO

In X-ray Fourier-transform holography, images are formed by exploiting the interference pattern between the X-rays scattered from the sample and a known reference wave. To date, this technique has only been possible with a limited set of special reference waves. We demonstrate X-ray Fourier-transform holography with an almost unrestricted choice for the reference wave, permitting experimental geometries to be designed according to the needs of each experiment and opening up new avenues to optimize signal-to-noise and resolution. The optimization of holographic references can aid the development of holographic techniques to meet the demands of resolution and fidelity required for single-shot imaging applications with X-ray lasers.

2.
Microsc Microanal ; 20(4): 1090-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24851899

RESUMO

We present a deterministic approach to the ptychographic retrieval of the wave at the exit surface of a specimen of condensed matter illuminated by X-rays. The method is based on the solution of an overdetermined set of linear equations, and is robust to measurement noise. The set of linear equations is efficiently solved using the conjugate gradient least-squares method implemented using fast Fourier transforms. The method is demonstrated using a data set obtained from a gold-chromium nanostructured test object. It is shown that the transmission function retrieved by this linear method is quantitatively comparable with established methods of ptychography, with a large decrease in computational time, and is thus a good candidate for real-time reconstruction.


Assuntos
Difração de Raios X/métodos , Cromo/química , Ouro/química , Modelos Teóricos , Nanoestruturas/química
3.
Ultramicroscopy ; 134: 185-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23896032

RESUMO

Energy-filtered scanning confocal electron microscopy (EF-SCEM) is a technique that uses the reduced depth of field of an aberration-corrected transmission electron microscope to provide three-dimensional (3D) compositional information. Using a silicon sample in the <110> orientation, we show that EF-SCEM image data can be recorded that shows lattice resolution in the plane perpendicular to the incident beam direction. The confocal effect is demonstrated through the reduction of the mean intensity as the confocal plane is displaced from the sample mid-plane, unlike optical sectioning in high-angle annular dark-field scanning transmission electron microscopy (STEM). Simulations of the EF-SCEM data show agreement with the experimental data, and allow the interpretability of the data to be explored. The effects of channelling, absorption and delocalisation complicate the quantitative and qualitative interpretation of the data, highlighting the need for matching to simulations. Finally the effects of the finite detector pin-hole aperture size are explored, and we show that the EF-SCEM contrast in the plane perpendicular to the beam direction starts to resemble that of a STEM spectrum imaging experiment as the aperture size increases.


Assuntos
Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Microscopia Eletrônica de Transmissão por Filtração de Energia/métodos , Simulação por Computador
4.
Phys Rev Lett ; 111(26): 266101, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24483805

RESUMO

We report on three-dimensional (3D) imaging of individual Gd dopant atoms in a thin (∼2.3 nm) foil of SrTiO3, using quantitative scanning transmission electron microscopy. Uncertainties in the depth positions of individual dopants are less than 1 unit cell. The overall dopant concentration measured from atom column intensities agrees quantitatively with electrical measurements. The method is applied to analyze the 3D arrangement of dopants within small clusters containing 4-5 Gd atoms.

5.
Phys Rev Lett ; 108(7): 073901, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401205

RESUMO

Ptychographic coherent diffractive imaging (CDI) has been extensively applied using both x rays and electrons. The extension to atomic resolution has been elusive. This Letter demonstrates ptychographic electron diffractive imaging at atomic resolution, permitting identification of structure in a boron nitride helical cone at a resolution of order 1 Å, beyond that of comparative Z-contrast images. A scanning transmission electron microscope is used to create a diverging illumination in a defocused Fresnel CDI geometry, providing a robust strategy leading to a unique solution.

6.
Ultramicroscopy ; 111(11): 1540-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21939618

RESUMO

We study atomic-resolution annular electron energy-loss spectroscopy (AEELS) in scanning transmission electron microscopy (STEM) imaging with experiments and numerical simulations. In this technique the central part of the bright field disk is blocked by a beam stop, forming an annular entry aperture to the spectrometer. The EELS signal thus arises only from electrons scattered inelastically to angles defined by the aperture. It will be shown that this method is more robust than conventional EELS imaging to variations in specimen thickness and can also provide higher spatial resolution. This raises the possibility of lattice resolution imaging of lighter elements or ionization edges previously considered unsuitable for EELS imaging.

8.
Ultramicroscopy ; 111(7): 877-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21093152

RESUMO

Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored.


Assuntos
Elétrons , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Ouro/química , Processamento de Imagem Assistida por Computador/métodos , Cristalino/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...