Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(5): e3002418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713714

RESUMO

The phenomenon of de novo gene birth-the emergence of genes from non-genic sequences-has received considerable attention due to the widespread occurrence of genes that are unique to particular species or genomes. Most instances of de novo gene birth have been recognized through comparative analyses of genome sequences in eukaryotes, despite the abundance of novel, lineage-specific genes in bacteria and the relative ease with which bacteria can be studied in an experimental context. Here, we explore the genetic record of the Escherichia coli long-term evolution experiment (LTEE) for changes indicative of "proto-genic" phases of new gene birth in which non-genic sequences evolve stable transcription and/or translation. Over the time span of the LTEE, non-genic regions are frequently transcribed, translated and differentially expressed, with levels of transcription across low-expressed regions increasing in later generations of the experiment. Proto-genes formed downstream of new mutations result either from insertion element activity or chromosomal translocations that fused preexisting regulatory sequences to regions that were not expressed in the LTEE ancestor. Additionally, we identified instances of proto-gene emergence in which a previously unexpressed sequence was transcribed after formation of an upstream promoter, although such cases were rare compared to those caused by recruitment of preexisting promoters. Tracing the origin of the causative mutations, we discovered that most occurred early in the history of the LTEE, often within the first 20,000 generations, and became fixed soon after emergence. Our findings show that proto-genes emerge frequently within evolving populations, can persist stably, and can serve as potential substrates for new gene formation.


Assuntos
Escherichia coli , Evolução Molecular , Regiões Promotoras Genéticas , Escherichia coli/genética , Regiões Promotoras Genéticas/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mutação , Genes Bacterianos , Transcrição Gênica
2.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38013999

RESUMO

The phenomenon of de novo gene birth-the emergence of genes from non-genic sequences-has received considerable attention due to the widespread occurrence of genes that are unique to particular species or genomes. Most instances of de novo gene birth have been recognized through comparative analyses of genome sequences in eukaryotes, despite the abundance of novel, lineage-specific genes in bacteria and the relative ease with which bacteria can be studied in an experimental context. Here, we explore the genetic record of the Escherichia coli Long-Term Evolution Experiment (LTEE) for changes indicative of "proto-genic" phases of new gene birth in which non-genic sequences evolve stable transcription and/or translation. Over the time-span of the LTEE, non-genic regions are frequently transcribed, translated and differentially expressed, thereby serving as raw material for new gene emergence. Most proto-genes result either from insertion element activity or chromosomal translocations that fused pre-existing regulatory sequences to regions that were not expressed in the LTEE ancestor. Additionally, we identified instances of proto-gene emergence in which a previously unexpressed sequence was transcribed after formation of an upstream promoter. Tracing the origin of the causative mutations, we discovered that most occurred early in the history of the LTEE, often within the first 20,000 generations, and became fixed soon after emergence. Our findings show that proto-genes emerge frequently within evolving populations, persist stably, and can serve as potential substrates for new gene formation.

3.
Microorganisms ; 9(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578755

RESUMO

The potency and indiscriminate nature of formaldehyde reactivity upon biological molecules make it a universal stressor. However, some organisms such as Methylorubrum extorquens possess means to rapidly and effectively mitigate formaldehyde-induced damage. EfgA is a recently identified formaldehyde sensor predicted to halt translation in response to elevated formaldehyde as a means to protect cells. Herein, we investigate growth and changes in gene expression to understand how M. extorquens responds to formaldehyde with and without the EfgA-formaldehyde-mediated translational response, and how this mechanism compares to antibiotic-mediated translation inhibition. These distinct mechanisms of translation inhibition have notable differences: they each involve different specific players and in addition, formaldehyde also acts as a general, multi-target stressor and a potential carbon source. We present findings demonstrating that in addition to its characterized impact on translation, functional EfgA allows for a rapid and robust transcriptional response to formaldehyde and that removal of EfgA leads to heightened proteotoxic and genotoxic stress in the presence of increased formaldehyde levels. We also found that many downstream consequences of translation inhibition were shared by EfgA-formaldehyde- and kanamycin-mediated translation inhibition. Our work uncovered additional layers of regulatory control enacted by functional EfgA upon experiencing formaldehyde stress, and further demonstrated the importance this protein plays at both transcriptional and translational levels in this model methylotroph.

4.
Int J Mol Sci ; 20(14)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323794

RESUMO

Impairments in translation have been increasingly implicated in the pathogenesis and progression of multiple neurodegenerative diseases. Assessing the spatiotemporal dynamics of translation in the context of disease is a major challenge. Recent developments in proteomic analyses have enabled the resolution of nascent peptides in a short timescale on the order of minutes. In addition, a quantitative analysis of translation has progressed in vivo, showing remarkable potential for coupling these techniques with cognitive and behavioral outcomes. Here, we review these modern approaches to measure changes in translation and ribosomal function with a specific focus on current applications in the mammalian brain and in the study of neurodegenerative diseases.


Assuntos
Proteômica/métodos , Ribossomos/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Biossíntese de Proteínas/fisiologia
5.
PLoS Genet ; 14(4): e1007348, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649242

RESUMO

Key innovations are disruptive evolutionary events that enable a species to escape constraints and rapidly diversify. After 15 years of the Lenski long-term evolution experiment with Escherichia coli, cells in one of the twelve populations evolved the ability to utilize citrate, an abundant but previously untapped carbon source in the environment. Descendants of these cells became dominant in the population and subsequently diversified as a consequence of invading this vacant niche. Mutations responsible for the appearance of rudimentary citrate utilization and for refining this ability have been characterized. However, the complete nature of the genetic and/or ecological events that set the stage for this key innovation is unknown. In particular, it is unclear why it took so long for citrate utilization to evolve and why it still has evolved in only one of the twelve E. coli populations after 30 years of the Lenski experiment. In this study, we recapitulated the initial mutation needed to evolve citrate utilization in strains isolated from throughout the first 31,500 generations of the history of this population. We found that there was already a slight fitness benefit for this mutation in the original ancestor of the evolution experiment and in other early isolates. However, evolution of citrate utilization was blocked at this point due to competition with other mutations that improved fitness in the original niche. Subsequently, an anti-potentiated genetic background evolved in which it was deleterious to evolve rudimentary citrate utilization. Only later, after further mutations accumulated that restored the benefit of this first-step mutation and the overall rate of adaptation in the population slowed, was citrate utilization likely to evolve. Thus, intense competition and the types of mutations that it favors can lead to short-sighted evolutionary trajectories that hide a stepping stone needed to access a key innovation from many future generations.


Assuntos
Adaptação Fisiológica/genética , Ácido Cítrico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Meios de Cultura/química , Evolução Molecular Direcionada , Ecossistema , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Introdução de Genes , Genes Bacterianos , Modelos Biológicos , Modelos Genéticos , Mutação , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Filogenia
6.
J Comp Neurol ; 524(14): 2740-52, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26878116

RESUMO

Mutations in the MATR3 gene encoding the nucleotide binding protein Matrin 3 have recently been identified as causing a subset of familial amyotrophic lateral sclerosis (fALS) and more rarely causing distal myopathy. Translating the identification of MATR3 mutations into an understanding of disease pathogenesis and the creation of mouse models requires a complete understanding of normal Matrin 3 levels and distribution in vivo. Consequently, we examined the levels of murine Matrin 3 in body tissues and regions of the central nervous system (CNS). We observed a significant degree of variability in Matrin 3 protein levels among different tissues of adult animals, with the highest levels found in reproductive organs and the lowest in muscle. Within the adult CNS, Matrin 3 levels were lowest in spinal cord. Further, we found that Matrin 3 declines significantly in CNS through early development and young adulthood before stabilizing. As previously reported, antibodies to Matrin 3 primarily stain nuclei, but the intensity of staining was not uniform in all nuclei. The low levels of Matrin 3 in spinal cord and muscle could mean that that these tissues are particularly vulnerable to alterations in Matrin 3 function. Our study is the first to characterize endogenous Matrin 3 in rodents across the lifespan, providing the groundwork for deciphering disease mechanisms and developing mouse models of MATR3-linked ALS. J. Comp. Neurol. 524:2740-2752, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Envelhecimento/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas Associadas à Matriz Nuclear/biossíntese , Proteínas de Ligação a RNA/biossíntese , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
RNA ; 21(8): 1419-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26089325

RESUMO

TDP-43 is a soluble, nuclear protein that undergoes cytoplasmic redistribution and aggregation in the majority of cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 autoregulates the abundance of its own transcript TARDBP by binding to an intron in the 3' untranslated region, although the mechanisms underlying this activity have been debated. Herein, we provide the most extensive analysis of TARDBP transcript yet undertaken. We detail the existence of a plethora of complex splicing events and alternative poly(A) use and provide data that explain the discrepancies reported to date regarding the autoregulatory capacity of TDP-43. Additionally, although many splice isoforms emanating from the TARDBP locus contain the regulated intron in the 3' UTR, we find only evidence for autoregulation of the transcript encoding full-length TDP-43. Finally, we use a novel cytoplasmic isoform of TDP to induce disease-like loss of soluble, nuclear TDP-43, which results in aberrant splicing and up-regulation of endogenous TARDBP. These results reveal a previously underappreciated complexity to TDP-43 regulated splicing and suggest that loss of TDP-43 autoregulatory capacity may contribute to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/etiologia , RNA Mensageiro/genética , Regiões 3' não Traduzidas , Processamento Alternativo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Íntrons , Camundongos , Mutação
10.
Front Aging Neurosci ; 6: 204, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191265

RESUMO

In the search for therapeutic modifiers, frontotemporal dementia (FTD) has traditionally been overshadowed by other conditions such as Alzheimer's disease (AD). A clinically and pathologically diverse condition, FTD has been galvanized by a number of recent discoveries such as novel genetic variants in familial and sporadic forms of disease and the identification of TAR DNA binding protein of 43 kDa (TDP-43) as the defining constituent of inclusions in more than half of cases. In combination with an ever-expanding knowledge of the function and dysfunction of tau-a protein which is pathologically aggregated in the majority of the remaining cases-there exists a greater understanding of FTD than ever before. These advances may indicate potential approaches for the development of hypothetical therapeutics, but FTD remains highly complex and the roles of tau and TDP-43 in neurodegeneration are still wholly unclear. Here the challenges facing potential therapeutic strategies are discussed, which include sufficiently accurate disease diagnosis and sophisticated technology to deliver effective therapies.

11.
J Alzheimers Dis ; 42(4): 1151-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024316

RESUMO

For the last several decades, Alzheimer's disease (AD) has been widely regarded as a late life event, but is now being redefined as a chronic condition that develops over decades. Concurrently, a preponderance of evidence emerging from basic and clinical research in diverse fields such as cardiovascular, endocrine, and mental health has suggested that the environmental component of clinical AD is not only multifactorial in populations and in individuals, but is also modifiable across the life-course, from conception until death. Re-conceptualizing the environmental component of AD to account for these observations necessitates an approach to brain health that eschews singular, short- and medium-term methodology and instead reflects long-term complexity. Such thinking is consistent with the ecological models of public health, which emphasize the development of community infrastructure that can foster population and individual health over the life-course by minimizing risk through multifaceted, systemic approaches.


Assuntos
Doença de Alzheimer , Saúde Pública/métodos , Doença de Alzheimer/classificação , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Interação Gene-Ambiente , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Fatores de Risco
12.
PLoS One ; 9(1): e86513, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466128

RESUMO

The majority of cases of frontotemporal lobar degeneration and amyotrophic lateral sclerosis are pathologically defined by the cleavage, cytoplasmic redistribution and aggregation of TAR DNA binding protein of 43 kDa (TDP-43). To examine the contribution of these potentially toxic mechanisms in vivo, we generated transgenic mice expressing human TDP-43 containing the familial amyotrophic lateral sclerosis-linked M337V mutation and identified two lines that developed neurological phenotypes of differing severity and progression. The first developed a rapid cortical neurodegenerative phenotype in the early postnatal period, characterized by fragmentation of TDP-43 and loss of endogenous murine Tdp-43, but entirely lacking aggregates of ubiquitin or TDP-43. A second, low expressing line was aged to 25 months without a severe neurodegenerative phenotype, despite a 30% loss of mouse Tdp-43 and accumulation of lower molecular weight TDP-43 species. Furthermore, TDP-43 fragments generated during neurodegeneration were not C-terminal, but rather were derived from a central portion of human TDP-43. Thus we find that aggregation is not required for cell loss, loss of murine Tdp-43 is not necessarily sufficient in order to develop a severe neurodegenerative phenotype and lower molecular weight TDP-43 positive species in mouse models should not be inherently assumed to be representative of human disease. Our findings are significant for the interpretation of other transgenic studies of TDP-43 proteinopathy.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação , Fenótipo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo
13.
Acta Neuropathol ; 126(1): 39-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666556

RESUMO

Frontotemporal lobar degeneration (FTLD) has been subdivided based on the main pathology found in the brains of affected individuals. When the primary pathology is aggregated, hyperphosphorylated tau, the pathological diagnosis is FTLD-tau. When the primary pathology is cytoplasmic and/or nuclear aggregates of phosphorylated TAR-DNA-binding protein (TDP-43), the pathological diagnosis is FTLD-TDP. Notably, TDP-43 pathology can also occur in conjunction with a number of neurodegenerative disorders; however, unknown environmental and genetic factors may regulate this TDP-43 pathology. Using transgenic mouse models of several diseases of the central nervous system, we explored whether a primary proteinopathy might secondarily drive TDP-43 proteinopathy. We found abnormal, cytoplasmic accumulation of phosphorylated TDP-43 specifically in two tau transgenic models, but TDP-43 pathology was absent in mouse models of Aß deposition, α-synucleinopathy or Huntington's disease. Though tau pathology showed considerable overlap with cytoplasmic, phosphorylated TDP-43, tau pathology generally preceded TDP-43 pathology. Biochemical analysis confirmed the presence of TDP-43 abnormalities in the tau mice, which showed increased levels of high molecular weight, soluble TDP-43 and insoluble full-length and ~35 kD TDP-43. These data demonstrate that the neurodegenerative cascade associated with a primary tauopathy in tau transgenic mice can also promote TDP-43 abnormalities. These findings provide the first in vivo models to understand how TDP-43 pathology may arise as a secondary consequence of a primary proteinopathy.


Assuntos
Encéfalo/patologia , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neurônios/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Citoplasma/patologia , Citoplasma/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Mutação/genética , Neurônios/ultraestrutura , Fosforilação/genética , Proteínas do Grupo Polycomb , Presenilina-1/genética , Tauopatias/genética , Fatores de Transcrição/metabolismo , Proteínas tau/genética
15.
Acta Neuropathol ; 123(6): 807-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22539017

RESUMO

Ubiquitin-immunoreactive neuronal inclusions composed of TAR DNA binding protein of 43 kDa (TDP-43) are a major pathological feature of frontotemporal lobar degeneration (FTLD-TDP). In vivo studies with TDP-43 knockout mice have suggested that TDP-43 plays a critical, although undefined role in development. In the current report, we generated transgenic mice that conditionally express wild-type human TDP-43 (hTDP-43) in the forebrain and established a paradigm to examine the sensitivity of neurons to TDP-43 overexpression at different developmental stages. Continuous TDP-43 expression during early neuronal development produced a complex phenotype, including aggregation of phospho-TDP-43, increased ubiquitin immunoreactivity, mitochondrial abnormalities, neurodegeneration and early lethality. In contrast, later induction of hTDP-43 in the forebrain of weaned mice prevented early death and mitochondrial abnormalities while yielding salient features of FTLD-TDP, including progressive neurodegeneration and ubiquitinated, phospho-TDP-43 neuronal cytoplasmic inclusions. These results suggest that neurons in the developing forebrain are extremely sensitive to TDP-43 overexpression and that timing of TDP-43 overexpression in transgenic mice must be considered when distinguishing normal roles of TDP-43, particularly as they relate to development, from its pathogenic role in FTLD-TDP and other TDP-43 proteinopathies. Finally, our adult induction of hTDP-43 strategy provides a mouse model that develops critical pathological features that are directly relevant for human TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Proteinopatias TDP-43/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Proteinopatias TDP-43/genética , Fatores de Tempo , Ubiquitina/metabolismo
16.
J Alzheimers Dis ; 25(4): 571-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21460435

RESUMO

The past two decades have seen an explosion in funding and research for Alzheimer's disease (AD), which has resulted in a wealth of data exploring the potential underlying processes, particularly with regard to amyloid-ß (Aß). However, to date, therapies based on this knowledge have not been forthcoming. In seeking an explanation for our current pharmacological failures, it has become clear that amyloid is only one part of a multi-factorial disease process incorporating a wealth of deleterious factors. Additionally, there is strong evidence that the initial production of Aß is part of the evolutionarily conserved stress response, triggered by a host of upstream factors highly altered in aging. Taken together, these observations place Aß in a drastically different context, with toxicity occurring secondarily to upstream deleterious factors and rendering current therapeutic strategies oversimplified. This re-conceptualization necessitates a paradigm shift in our scientific and social response to AD, placing a greater emphasis on upstream interventions and public health awareness of the measures that can be taken by most individuals to reduce the risk of AD. With the increasing prevalence of AD and the realization that disease-modifying drugs may not be available in the near future, it is the responsibility of science to better communicate the worth of preventative healthcare measures to the public.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Adaptação Fisiológica , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Meio Ambiente , Humanos , Saúde Pública , Fatores de Risco , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Proteínas tau
18.
J Neurosci ; 30(32): 10851-9, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20702714

RESUMO

Transactivation response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene encoding TDP-43, are associated with sporadic and familial ALS, yet multiple neurodegenerative diseases exhibit TDP-43 pathology without known TARDBP mutations. While TDP-43 has been ascribed a number of roles in normal biology, including mRNA splicing and transcription regulation, elucidating disease mechanisms associated with this protein is hindered by the lack of models to dissect such functions. We have generated transgenic (TDP-43PrP) mice expressing full-length human TDP-43 (hTDP-43) driven by the mouse prion promoter to provide a tool to analyze the role of wild-type hTDP-43 in the brain and spinal cord. Expression of hTDP-43 caused a dose-dependent downregulation of mouse TDP-43 RNA and protein. Moderate overexpression of hTDP-43 resulted in TDP-43 truncation, increased cytoplasmic and nuclear ubiquitin levels, and intranuclear and cytoplasmic aggregates that were immunopositive for phosphorylated TDP-43. Of note, abnormal juxtanuclear aggregates of mitochondria were observed, accompanied by enhanced levels of Fis1 and phosphorylated DLP1, key components of the mitochondrial fission machinery. Conversely, a marked reduction in mitofusin 1 expression, which plays an essential role in mitochondrial fusion, was observed in TDP-43PrP mice. Finally, TDP-43PrP mice showed reactive gliosis, axonal and myelin degeneration, gait abnormalities, and early lethality. This TDP-43 transgenic line provides a valuable tool for identifying potential roles of wild-type TDP-43 within the CNS and for studying TDP-43-associated neurotoxicity.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Transtornos dos Movimentos , Análise de Variância , Animais , Peso Corporal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/mortalidade , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/mortalidade , Degeneração Neural/patologia , Fosforilação/genética , Príons/genética , Príons/metabolismo , Coloração pela Prata/métodos , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...