Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924891

RESUMO

Sensor fault detection and isolation (SFDI) is a fundamental topic in unmanned aerial vehicle (UAV) development, where attitude estimation plays a key role in flight control systems and its accuracy is crucial for UAV reliability. In commercial drones with low maximum take-off weights, typical redundant architectures, based on triplex, can represent a strong limitation in UAV payload capabilities. This paper proposes an FDI algorithm for low-cost multi-rotor drones equipped with duplex sensor architecture. Here, attitude estimation involves two 9-DoF inertial measurement units (IMUs) including 3-axis accelerometers, gyroscopes and magnetometers. The SFDI algorithm is based on a particle filter approach to promptly detect and isolate IMU faulted sensors. The algorithm has been implemented on a low-cost embedded platform based on a Raspberry Pi board. Its effectiveness and robustness were proved through experimental tests involving realistic faults on a real tri-rotor aircraft. A sensitivity analysis was carried out on the main algorithm parameters in order to find a trade-off between performance, computational burden and reliability.

2.
Sensors (Basel) ; 20(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756360

RESUMO

This paper deals with the design of a decentralized guidance and control strategy for a swarm of unmanned aerial vehicles (UAVs), with the objective of maintaining a given connection topology with assigned mutual distances while flying to a target area. In the absence of obstacles, the assigned topology, based on an extended Delaunay triangulation concept, implements regular and connected formation shapes. In the presence of obstacles, this technique is combined with a model predictive control (MPC) that allows forming independent sub-swarms optimizing the formation spreading to avoid obstacles and collisions between neighboring vehicles. A custom numerical simulator was developed in a Matlab/Simulink environment to prove the effectiveness of the proposed guidance and control scheme in several 2D operational scenarios with obstacles of different sizes and increasing number of aircraft.

3.
Sensors (Basel) ; 20(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397181

RESUMO

This article proposes a novel approach to the Distributed State Estimation (DSE) problem for a set of co-operating UAVs equipped with heterogeneous on board sensors capable of exploiting certain characteristics typical of the UAS Traffic Management (UTM) context, such as high traffic density and the presence of limited range, Vehicle-to-Vehicle communication devices. The proposed algorithm is based on a scalable decentralized Kalman Filter derived from the Internodal Transformation Theory enhanced on the basis of the Consensus Theory. The general benefit of the proposed algorithm consists of, on the one hand, reducing the estimation problem to smaller local sub-problems, through a self-organization process of the local estimating nodes in response to the time varying communication topology; and on the other hand, of exploiting measures carried out nearby in order to improve the accuracy of the local estimates. In the UTM context, this enables each vehicle to estimate both its own position and velocity, as well as those of the neighboring vehicles, using both on board measurements and information transmitted by neighboring vehicles. A numerical simulation in a simplified UTM scenario is presented, in order to illustrate the salient aspects of the proposed algorithm.

4.
Sensors (Basel) ; 20(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877951

RESUMO

The optimization of production processes has always been one of the cornerstones for manufacturing companies, aimed to increase their productivity, minimizing the related costs. In the Industry 4.0 era, some innovative technologies, perceived as far away until a few years ago, have become reachable by everyone. The massive introduction of these technologies directly in the factories allows interconnecting the resources (machines and humans) and the entire production chain to be kept under control, thanks to the collection and the analyses of real production data, supporting the decision making process. This article aims to propose a methodological framework that, thanks to the use of Industrial Internet of Things-IoT devices, in particular the wearable sensors, and simulation tools, supports the analyses of production line performance parameters, by considering both experimental and numerical data, allowing a continuous monitoring of the line balancing and performance at varying of the production demand. A case study, regarding a manual task of a real manufacturing production line, is presented to demonstrate the applicability and the effectiveness of the proposed procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...