Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 171(1): 102-10, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20197095

RESUMO

Membrane proteins fulfill many important roles in the cell and represent the target for a large number of therapeutic drugs. Although structure determination of membrane proteins has become a major priority, it has proven to be technically challenging. Electron microscopy of two-dimensional (2D) crystals has the advantage of visualizing membrane proteins in their natural lipidic environment, but has been underutilized in recent structural genomics efforts. To improve the general applicability of electron crystallography, high-throughput methods are needed for screening large numbers of conditions for 2D crystallization, thereby increasing the chances of obtaining well ordered crystals and thus achieving atomic resolution. Previous reports describe devices for growing 2D crystals on a 96-well format. The current report describes a system for automated imaging of these screens with an electron microscope. Samples are inserted with a two-part robot: a SCARA robot for loading samples into the microscope holder, and a Cartesian robot for placing the holder into the electron microscope. A standard JEOL 1230 electron microscope was used, though a new tip was designed for the holder and a toggle switch controlling the airlock was rewired to allow robot control. A computer program for controlling the robots was integrated with the Leginon program, which provides a module for automated imaging of individual samples. The resulting images are uploaded into the Sesame laboratory information management system database where they are associated with other data relevant to the crystallization screen.


Assuntos
Proteínas de Membrana/química , Microscopia Eletrônica/métodos , Software , Automação , Cristalização , Microscopia Eletrônica/instrumentação , Estrutura Terciária de Proteína
2.
J Struct Funct Genomics ; 6(2-3): 225-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16211523

RESUMO

Structural GenomiX, Inc. (SGX), four New York area institutions, and two University of California schools have formed the New York Structural GenomiX Research Consortium (NYSGXRC), an industrial/academic Research Consortium that exploits individual core competencies to support all aspects of the NIH-NIGMS funded Protein Structure Initiative (PSI), including protein family classification and target selection, generation of protein for biophysical analyses, sample preparation for structural studies, structure determination and analyses, and dissemination of results. At the end of the PSI Pilot Study Phase (PSI-1), the NYSGXRC will be capable of producing 100-200 experimentally determined protein structures annually. All Consortium activities can be scaled to increase production capacity significantly during the Production Phase of the PSI (PSI-2). The Consortium utilizes both centralized and de-centralized production teams with clearly defined deliverables and hand-off procedures that are supported by a web-based target/sample tracking system (SGX Laboratory Information Data Management System, LIMS, and NYSGXRC Internal Consortium Experimental Database, ICE-DB). Consortium management is provided by an Executive Committee, which is composed of the PI and all Co-PIs. Progress to date is tracked on a publicly available Consortium web site (http://www.nysgxrc.org) and all DNA/protein reagents and experimental protocols are distributed freely from the New York City Area institutions. In addition to meeting the requirements of the Pilot Study Phase and preparing for the Production Phase of the PSI, the NYSGXRC aims to develop modular technologies that are transferable to structural biology laboratories in both academe and industry. The NYSGXRC PI and Co-PIs intend the PSI to have a transforming effect on the disciplines of X-ray crystallography and NMR spectroscopy of biological macromolecules. Working with other PSI-funded Centers, the NYSGXRC seeks to create the structural biology laboratory of the future. Herein, we present an overview of the organization of the NYSGXRC and describe progress toward development of a high-throughput Gene-->Structure platform. An analysis of current and projected consortium metrics reflects progress to date and delineates opportunities for further technology development.


Assuntos
Sistemas Multi-Institucionais/organização & administração , Proteínas/química , Proteínas/metabolismo , Proteômica/métodos , Proteômica/organização & administração , Clonagem Molecular/métodos , Cristalografia por Raios X/métodos , Cidade de Nova Iorque , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...