Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 14(4)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35931043

RESUMO

Over the past years, 3Din vitromodels have been widely employed in the regenerative medicine field. Among them, organ-on-a-chip technology has the potential to elucidate cellular mechanism exploiting multichannel microfluidic devices to establish 3D co-culture systems that offer control over the cellular, physico-chemical and biochemical microenvironments. To deliver the most relevant cues to cells, it is of paramount importance to select the most appropriate matrix for mimicking the extracellular matrix of the native tissue. Natural polymers-based hydrogels are the elected candidates for reproducing tissue-specific microenvironments in musculoskeletal tissue-on-a-chip models owning to their interesting and peculiar physico-chemical, mechanical and biological properties. Despite these advantages, there is still a gap between the biomaterials complexity in conventional tissue engineering and the application of these biomaterials in 3Din vitromicrofluidic models. In this review, the aim is to suggest the adoption of more suitable biomaterials, alternative crosslinking strategies and tissue engineered-inspired approaches in organ-on-a-chip to better mimic the complexity of physiological musculoskeletal tissues. Accordingly, after giving an overview of the musculoskeletal tissue compositions, the properties of the main natural polymers employed in microfluidic systems are investigated, together with the main musculoskeletal tissues-on-a-chip devices.


Assuntos
Dispositivos Lab-On-A-Chip , Engenharia Tecidual , Materiais Biocompatíveis/química , Polímeros , Medicina Regenerativa
2.
Biofabrication ; 12(3): 032001, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32259809

RESUMO

Biofabrication is enriching the tissue engineering field with new ways of producing structurally organized complex tissues. Among the numerous bioinks under investigation, hyaluronic acid (HA) and its derivatives stand out for their biological relevance, cytocompatibility, shear-thinning properties, and potential to fine-tune the desired properties with chemical modification. In this paper, we review the recent advances on bioinks containing HA. The available literature is presented based on subjects including the rheological properties in connection with printability, the chemical strategies for endowing HA with the desired properties, the clinical application, the most advanced preclinical studies, the advantages and limitations in comparison with similar biopolymer-based bioinks, and future perspectives.


Assuntos
Bioimpressão , Ácido Hialurônico/química , Tinta , Impressão Tridimensional , Reagentes de Ligações Cruzadas/química , Reologia
3.
Connect Tissue Res ; 61(2): 152-162, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31398999

RESUMO

Background: In the case of a degenerated intervertebral disc (IVD), even though spinal fusion has provided good short-term clinical results, an alteration of the spine stability has been demonstrated by long-term studies. In this context, different designs of IVD prostheses have been proposed as alternative to spinal fusion. However, over the past few years, much of the recent research has been devoted to IVD tissue engineering, even if several limitations related to the complex structure of IVD are still presented.Purpose/Aim: Accordingly, the aim of the current paper was to develop a strategy in designing customised multiphasic nucleus/annulus scaffolds for IVD tissue engineering, benefiting from the great potential of reverse engineering, additive manufacturing and gels technology.Materials and Methods: The device consisted of a customised additive-manufactured poly(ε-caprolactone) scaffold with tailored architectural features as annulus and a cell-laden collagen-low molecular weight hyaluronic acid-based material as nucleus with specific rheological and functional properties. To this aim, injectability and viscoelastic properties of the hydrogel were analyzed. Furthermore, a mechanical and biological characterization of cell-laden multiphasic nucleus/annulus scaffold was performed.Results and Conclusions: Analyses on the developed devices demonstrated appropriate viscoelastic and mechanical properties. As evidenced by rheological tests, the hydrogel showed a shear-thinning behaviour, supporting the possibility to inject the material. The mechanical characterization highlighted a compressive modulus which falls in the range of lumbar discs, with the typical initial J-shaped stress-strain curve of natural IVDs. Furthermore, preliminary biological tests showed that human mesenchymal stem cells were viable over the culture period.


Assuntos
Degeneração do Disco Intervertebral/terapia , Núcleo Pulposo/fisiologia , Regeneração , Alicerces Teciduais/química , Animais , Colágeno/química , Humanos , Hidrogéis/química
4.
Regen Biomater ; 6(5): 249-258, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31620307

RESUMO

The main driving idea of the present study was the comparison between two different chemical modifications of hyaluronic acid (HA) followed by the development of nanocomposite hydrogels directly in situ by biomineralization of photocrosslinkable HA polymers through sol-gel synthesis. In this way, it has been possible to overcome some limitations due to classical approaches based on the physical blending of inorganic fillers into polymer matrix. To this aim, methacrylated and maleated HA, synthesized with similar degree of substitution (DS) were compared in terms of mechanical and physico-chemical properties. The success of in situ biomineralization was highlighted by reflect Fourier transform infrared spectroscopy and thermogravimetric analysis. Furthermore, mechanical characterization demonstrated the reinforcing effect of inorganic fillers evidencing a strong correlation with DS. The swelling behavior resulted to be correlated with filler concentration. Finally, the cytotoxicity tests revealed the absence of toxic components and an increase of cell proliferation over culture time was observed, highlighting these bio-nanocomposite hyaluronan derivatives as biocompatible hydrogel with tunable properties.

5.
Bioact Mater ; 2(3): 156-161, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29744425

RESUMO

In total knee arthroplasty (TKA) and total hip replacement (THR) the restoration of the normal joint function represents a fundamental feature. A prosthetic joint must be able to provide motions and to transmit functional loads. As reported in the literature, the stress distribution may be altered in bones after the implantation of a total joint prosthesis. Some scientific works have also correlated uncemented TKA to a progressive decrease of bone density below the tibial component. Antibiotic-loaded bone cements are commonly employed in conjunction with systemic antibiotics to treat infections. Furthermore, nanoparticles with antimicrobial activity have been widely analysed. Accordingly, the current research was focused on a preliminary analysis of the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. The obtained results demonstrated that nanocomposite cements with a specific concentration of gold nanoparticles improved the punching performance and antibacterial activity. However, critical aspects were found in the optimization of the nanocomposite bone cement.

6.
J R Soc Interface ; 10(80): 20120833, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23303218

RESUMO

In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.


Assuntos
Osso e Ossos/metabolismo , Durapatita/química , Ferro/química , Células-Tronco Mesenquimais/metabolismo , Nanocompostos/química , Poliésteres/química , Engenharia Tecidual/métodos , Osso e Ossos/citologia , Adesão Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Magnetismo , Teste de Materiais/métodos , Células-Tronco Mesenquimais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...