Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 62(23): 6094-6104, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36433835

RESUMO

Force fields form the basis for classical molecular simulations, and their accuracy is crucial for the quality of, for instance, protein-ligand binding simulations in drug discovery. The huge diversity of small-molecule chemistry makes it a challenge to build and parameterize a suitable force field. The Open Force Field Initiative is a combined industry and academic consortium developing a state-of-the-art small-molecule force field. In this report, industry members of the consortium worked together to objectively evaluate the performance of the force fields (referred to here as OpenFF) produced by the initiative on a combined public and proprietary dataset of 19,653 relevant molecules selected from their internal research and compound collections. This evaluation was important because it was completely blind; at most partners, none of the molecules or data were used in force field development or testing prior to this work. We compare the Open Force Field "Sage" version 2.0.0 and "Parsley" version 1.3.0 with GAFF-2.11-AM1BCC, OPLS4, and SMIRNOFF99Frosst. We analyzed force-field-optimized geometries and conformer energies compared to reference quantum mechanical data. We show that OPLS4 performs best, and the latest Open Force Field release shows a clear improvement compared to its predecessors. The performance of established force fields such as GAFF-2.11 was generally worse. While OpenFF researchers were involved in building the benchmarking infrastructure used in this work, benchmarking was done entirely in-house within industrial organizations and the resulting assessment is reported here. This work assesses the force field performance using separate benchmarking steps, external datasets, and involving external research groups. This effort may also be unique in terms of the number of different industrial partners involved, with 10 different companies participating in the benchmark efforts.


Assuntos
Proteínas , Termodinâmica , Ligantes , Proteínas/química , Fenômenos Físicos
2.
J Am Chem Soc ; 143(42): 17751-17760, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34658244

RESUMO

The properties of metal/dioxygen species, which are key intermediates in oxidation catalysis, can be modulated by interaction with redox-inactive Lewis acids, but structural information about these adducts is scarce. Here we demonstrate that even mildly Lewis acidic alkali metal ions, which are typically viewed as innocent "spectators", bind strongly to a reactive cis-peroxo dicopper(II) intermediate. Unprecedented structural insight has now been obtained from X-ray crystallographic characterization of the "bare" CuII2(µ-η1:η1-O2) motif and its Li+, Na+, and K+ complexes. UV-vis, Raman, and electrochemical studies show that the binding persists in MeCN solution, growing stronger in proportion to the cation's Lewis acidity. The affinity for Li+ is surprisingly high (∼70 × 104 M-1), leading to Li+ extraction from its crown ether complex. Computational analysis indicates that the alkali ions influence the entire Cu-OO-Cu core, modulating the degree of charge transfer from copper to dioxygen. This induces significant changes in the electronic, magnetic, and electrochemical signatures of the Cu2O2 species. These findings have far-reaching implications for analyses of transient metal/dioxygen intermediates, which are often studied in situ, and they may be relevant to many (bio)chemical oxidation processes when considering the widespread presence of alkali cations in synthetic and natural environments.

3.
Nat Commun ; 12(1): 1621, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712579

RESUMO

Multidimensional fitness landscapes provide insights into the molecular basis of laboratory and natural evolution. To date, such efforts usually focus on limited protein families and a single enzyme trait, with little concern about the relationship between protein epistasis and conformational dynamics. Here, we report a multiparametric fitness landscape for a cytochrome P450 monooxygenase that was engineered for the regio- and stereoselective hydroxylation of a steroid. We develop a computational program to automatically quantify non-additive effects among all possible mutational pathways, finding pervasive cooperative signs and magnitude epistasis on multiple catalytic traits. By using quantum mechanics and molecular dynamics simulations, we show that these effects are modulated by long-range interactions in loops, helices and ß-strands that gate the substrate access channel allowing for optimal catalysis. Our work highlights the importance of conformational dynamics on epistasis in an enzyme involved in secondary metabolism and offers insights for engineering P450s.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Simulação de Dinâmica Molecular , Mutação , Catálise , Domínio Catalítico/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Cinética , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
4.
Chem Commun (Camb) ; 56(81): 12146-12149, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32910113

RESUMO

We introduce here the spin-resolved version of the charge displacement function, which is applied to two competing pathways of proton-coupled electron transfer in oxidation catalysis (hydrogen-atom transfer, concerted proton-coupled electron transfer). The difference in charge displacement between the two mechanisms is directly observable and can be translated to electron flow using this new analysis tool.

5.
Angew Chem Int Ed Engl ; 59(30): 12499-12505, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32243054

RESUMO

Steroidal C7ß alcohols and their respective esters have shown significant promise as neuroprotective and anti-inflammatory agents to treat chronic neuronal damage like stroke, brain trauma, and cerebral ischemia. Since C7 is spatially far away from any functional groups that could direct C-H activation, these transformations are not readily accessible using modern synthetic organic techniques. Reported here are P450-BM3 mutants that catalyze the oxidative hydroxylation of six different steroids with pronounced C7 regioselectivities and ß stereoselectivities, as well as high activities. These challenging transformations were achieved by a focused mutagenesis strategy and application of a novel technology for protein library construction based on DNA assembly and USER (Uracil-Specific Excision Reagent) cloning. Upscaling reactions enabled the purification of the respective steroidal alcohols in moderate to excellent yields. The high-resolution X-ray structure and molecular dynamics simulations of the best mutant unveil the origin of regio- and stereoselectivity.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Mutação , Esteroides/química , Sistema Enzimático do Citocromo P-450/genética , Ligação de Hidrogênio , Hidroxilação , Simulação de Dinâmica Molecular , Oxirredução , Estereoisomerismo , Especificidade por Substrato
6.
Inorg Chem ; 58(11): 7584-7592, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31084018

RESUMO

The use of copper for C-H bond functionalization, compared to other metals, is relatively unexplored. Herein, we report a synthetic protocol for the regioselective hydroxylation of sp2 and sp3 C-H bonds using a directing group, stoichiometric amounts of Cu and H2O2. A wide array of aromatic ketones and aldehydes are oxidized in the carbonyl γ-position with remarkable yields. We also expanded this methodology to hydroxylate the ß-position of alkylic ketones. Spectroscopic characterization, kinetics, and density functional theory calculations point toward the involvement of a mononuclear LCuII(OOH) species, which oxidizes the aromatic sp2 C-H bonds via a concerted heterolytic O-O bond cleavage with concomitant electrophilic attack on the arene system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...