Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(26): e2300912, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400372

RESUMO

The field of biomedical design and manufacturing has been rapidly evolving, with implants and grafts featuring complex 3D design constraints and materials distributions. By combining a new coding-based design and modeling approach with high-throughput volumetric printing, a new approach is demonstrated to transform the way complex shapes are designed and fabricated for biomedical applications. Here, an algorithmic voxel-based approach is used that can rapidly generate a large design library of porous structures, auxetic meshes and cylinders, or perfusable constructs. By deploying finite cell modeling within the algorithmic design framework, large arrays of selected auxetic designs can be computationally modeled. Finally, the design schemes are used in conjunction with new approaches for multi-material volumetric printing based on thiol-ene photoclick chemistry to rapidly fabricate complex heterogeneous shapes. Collectively, the new design, modeling and fabrication techniques can be used toward a wide spectrum of products such as actuators, biomedical implants and grafts, or tissue and disease models.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Engenharia Tecidual/métodos , Próteses e Implantes , Porosidade
2.
ACS Appl Mater Interfaces ; 9(35): 29430-29437, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28816441

RESUMO

We present a design rationale for stretchable soft network composites for engineering tissues that predominantly function under high tensile loads. The convergence of 3D-printed fibers selected from a design library and biodegradable interpenetrating polymer networks (IPNs) result in biomimetic tissue engineered constructs (bTECs) with fully tunable properties that can match specific tissue requirements. We present our technology platform using an exemplary soft network composite model that is characterized to be flexible, yet ∼125 times stronger (E = 3.19 MPa) and ∼100 times tougher (WExt = ∼2000 kJ m-3) than its hydrogel counterpart.


Assuntos
Engenharia Tecidual , Tecido Conjuntivo , Hidrogéis , Polímeros
3.
Biofabrication ; 9(2): 025014, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28374682

RESUMO

Articular cartilage from a material science point of view is a soft network composite that plays a critical role in load-bearing joints during dynamic loading. Its composite structure, consisting of a collagen fiber network and a hydrated proteoglycan matrix, gives rise to the complex mechanical properties of the tissue including viscoelasticity and stress relaxation. Melt electrospinning writing allows the design and fabrication of medical grade polycaprolactone (mPCL) fibrous networks for the reinforcement of soft hydrogel matrices for cartilage tissue engineering. However, these fiber-reinforced constructs underperformed under dynamic and prolonged loading conditions, suggesting that more targeted design approaches and material selection are required to fully exploit the potential of fibers as reinforcing agents for cartilage tissue engineering. In the present study, we emulated the proteoglycan matrix of articular cartilage by using highly negatively charged star-shaped poly(ethylene glycol)/heparin hydrogel (sPEG/Hep) as the soft matrix. These soft hydrogels combined with mPCL melt electrospun fibrous networks exhibited mechanical anisotropy, nonlinearity, viscoelasticity and morphology analogous to those of their native counterpart, and provided a suitable microenvironment for in vitro human chondrocyte culture and neocartilage formation. In addition, a numerical model using the p-version of the finite element method (p-FEM) was developed in order to gain further insights into the deformation mechanisms of the constructs in silico, as well as to predict compressive moduli. To our knowledge, this is the first study presenting cartilage tissue-engineered constructs that capture the overall transient, equilibrium and dynamic biomechanical properties of human articular cartilage.


Assuntos
Órgãos Bioartificiais , Materiais Biocompatíveis/química , Hidrogéis/química , Engenharia Tecidual , Idoso , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Força Compressiva , Heparina/química , Humanos , Masculino , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Poliésteres , Polietilenoglicóis/química , Viscosidade , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...