Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 60(3): 695-709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558363

RESUMO

Crustose coralline algae (CCA) are a highly diverse group of habitat-forming, calcifying red macroalgae (Rhodophyta) with unique adaptations to diverse irradiance regimes. A distinctive CCA phenotype adaptation, which allows them to maximize photosynthetic performance in low light, is their content of a specific group of light-harvesting pigments called phycobilins. In this study, we assessed the potential of noninvasive hyperspectral imaging (HSI) in the visible spectrum (400-800 nm) to describe the phenotypic variability in phycobilin content of an Antarctic coralline, Tethysphytum antarcticum (Hapalidiales), from two distinct locations. We validated our measurements with pigment extractions and spectrophotometry analysis, in addition to DNA barcoding using the psbA marker. Targeted spectral indices were developed and correlated with phycobilin content using linear mixed models (R2 = 0.64-0.7). Once applied to the HSI, the models revealed the distinct phycoerythrin spatial distribution in the two site-specific CCA phenotypes, with thin and thick crusts, respectively. This study advances the capabilities of hyperspectral imaging as a tool to quantitatively study CCA pigmentation in relation to their phenotypic plasticity, which can be applied in laboratory studies and potentially in situ surveys using underwater hyperspectral imaging systems.


Assuntos
Ficobilinas , Rodófitas , Regiões Antárticas , Ficobilinas/análise , Ficobilinas/metabolismo , Imageamento Hiperespectral/métodos , Pigmentos Biológicos/análise , Pigmentos Biológicos/metabolismo , Código de Barras de DNA Taxonômico
2.
Harmful Algae ; 128: 102494, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714580

RESUMO

Temperatures and temperature anomalies have been increasing in the sub-tropical regions of Aotearoa New Zealand and these changes may impact on harmful algal bloom (HAB) events. Benthic and epiphytic dinoflagellates, particularly the toxin producers, are the focus of this study as it is predicted that under future climate conditions they may produce more toxins or marine animals may become more susceptible to them. The results of past expeditions to Rangitahua Kermadec Islands and sampling trips to Northland, Aotearoa New Zealand, are summarised and the results of the most recent trips to both regions are presented. The macroalgal habitats of the dinoflagellates are also characterised. Dinoflagellate species not previously identified in Rangitahua include Coolia canariensis, C. palmyrensis, and C. tropicalis, all identified by DNA sequencing of the large subunit ribosomal RNA region. Gambierdiscus polynesiensis was again isolated and produced 44-methylgambierone and gambierone, and one isolate produced ciguatoxins, the cause of Ciguatera Poisoning. An Ostreopsis tairoto isolate, as analysed by the oxidative cleavage method, produced a palytoxin (PLTX)-like amine oxidation fragment, but when analysed for PLTX-like analogues using a new intact method none were detected indicating an 'unknown' PLTX-like compound is produced by this isolate. Isolates of O. cf. siamensis (Ostreopsis sp. 9), collected in Northland, were also analysed using the oxidative cleavage method, with the common PLTX-like amine fragment and the amide fragment corresponding to bishomoPLTX detected in all isolates. Again, the intact method indicated no detections in the isolates, again suggesting an unknown compound was being produced by these isolates. Prorocentrum hoffmannianum isolates produced okadaic acid (OA) and isoDTX-1 and P. lima isolates produced OA, DTX-1, and isoDTX-1. It is expected that new species of potentially harmful, benthic dinoflagellates will continue to be recorded in Aotearoa New Zealand and the results from Rangitahua provide a guide to the HAB species to expect in sub-tropical Northland as the oceans continue to warm.


Assuntos
Dinoflagellida , Animais , Ilhas , Nova Zelândia , Proliferação Nociva de Algas , Aminas
3.
J Phycol ; 48(3): 784-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27011095

RESUMO

Traditional studies suggest that the Kallymeniaceae can be divided into two major groups, a nonprocarpic Kallymenia group, in which carposporophyte formation involves an auxiliary cell branch system separate from the carpogonial branch system, and a procarpic Callophyllis group, in which the carpogonial branch system gives rise to the carposporophyte directly after fertilization. Based on our phylogenetic studies and unpublished observations, the two groups each contain both procarpic and nonprocarpic genera. Here, we describe a new method of reproductive development in Callophyllis concepcionensis Arakaki, Alveal et Ramírez from Chile. The carpogonial branch system consists of a supporting cell bearing both a three-celled carpogonial branch with trichogyne and two-lobed "subsidiary" cells. After fertilization, large numbers of secondary subcortical and medullary cells are produced. Lobes of the carpogonial branch system cut off connecting cells containing enlarged, presumably diploid nuclei that fuse with these secondary vegetative cells and deposit their nuclei. Derivative enlarged nuclei are transferred from one vegetative cell to another, which ultimately cut off gonimoblast initials that form filaments that surround the central primary medullary cells and produce carposporangia. The repeated involvement of vegetative cells in gonimoblast formation is a new observation, not only in Callophyllis, but in red algae generally. These results call for a revised classification of the Kallymeniaceae based on new morphological and molecular studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...