Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Environ Manage ; 287: 112285, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725659

RESUMO

Soil quality is fundamental for ecosystem long term functionality, productivity and resilience to current climatic changes. Despite its importance, soil is lost and degraded at dramatic rates worldwide. In Europe, the Mediterranean areas are a hotspot for soil erosion and land degradation due to a combination of climatic conditions, soils, geomorphology and anthropic pressure. Soil organic carbon (SOC) is considered a key indicator of soil quality as it relates to other fundamental soil functions supporting crucial ecosystem services. In the present study, the functional relationships among SOC and other important soil properties were investigated in the topsoil of 38 sites under different land cover and management, distributed over three Mediterranean regions under strong desertification risk, with the final aim to define critical SOC ranges for fast loss of important soil functionalities. The study sites belonged to private and public landowners seeking to adopt sustainable land management practices to support ecosystem sustainability and productivity of their land. Data showed a very clear relationship between SOC concentrations and the other analyzed soil properties: total nitrogen, bulk density, cation exchange capacity, available water capacity, microbial biomass, C fractions associated to particulate organic matter and to the mineral soil component and indirectly with net N mineralization. Below 20 g SOC kg-1, additional changes of SOC concentrations resulted in a steep variation of all the analyzed soil indicators, an order of magnitude higher than the changes occurring between 50 and 100 g SOC kg-1 and 3-4 times the changes observed at 20-50 g SOC kg-1. About half of the study sites showed average SOC concentration of the topsoil centimetres <20 g SOC kg-1. For these areas the level of SOC might hence be considered critical and immediate and effective recovery management plans are needed to avoid complete land degradation in the next future.


Assuntos
Carbono , Solo , Carbono/análise , Conservação dos Recursos Naturais , Ecossistema , Europa (Continente) , Região do Mediterrâneo
2.
Front Plant Sci ; 9: 534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740467

RESUMO

Plant invasions can have relevant impacts on biogeochemical cycles, whose extent, in Mediterranean ecosystems, have not yet been systematically assessed comparing litter carbon (C) and nitrogen (N) dynamics between invasive plants and native communities. We carried out a 1-year litterbag experiment in 4 different plant communities (grassland, sand dune, riparian and mixed forests) on 8 invasives and 24 autochthonous plant species, used as control. Plant litter was characterized for mass loss, N release, proximate lignin and litter chemistry by 13C CPMAS NMR. Native and invasive species showed significant differences in litter chemical traits, with invaders generally showing higher N concentration and lower lignin/N ratio. Mass loss data revealed no consistent differences between native and invasive species, although some woody and vine invaders showed exceptionally high decomposition rate. In contrast, N release rate from litter was faster for invasive plants compared to native species. N concentration, lignin content and relative abundance of methoxyl and N-alkyl C region from 13C CPMAS NMR spectra were the parameters that better explained mass loss and N mineralization rates. Our findings demonstrate that during litter decomposition invasive species litter has no different decomposition rates but greater N release rate compared to natives. Accordingly, invasives are expected to affect N cycle in Mediterranean plant communities, possibly promoting a shift of plant assemblages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...